
		
			
				
					
				
			

			
				
					Data Parallel C++

					Mastering DPC++ for Programming of

					Heterogeneous Systems using

					C++ and SYCL

					—

					James Reinders

					Ben Ashbaugh

					James Brodman

					Michael Kinsner

					John Pennycook

					Xinmin Tian

					www. dbooks . or g

				

			

		

		
			
				
					
				
			

			
				
					Data Parallel C++

					Mastering DPC++

					for Programming

					of Heterogeneous Systems

					using C++ and SYCL

					James Reinders

					Ben Ashbaugh

					James Brodman

					Michael Kinsner

					John Pennycook

					Xinmin Tian

				

			

		

		
			
				
					
				
			

			
				
					Data Parallel C++: Mastering DPC++ for Programming of Heterogeneous Systems using

					C++ and SYCL

					James Reinders

					Ben Ashbaugh

					Beaverton, OR, USA

					Folsom, CA, USA

					James Brodman

					Michael Kinsner

					Marlborough, MA, USA

					Halifax, NS, Canada

					John Pennycook

					San Jose, CA, USA

					Xinmin Tian

					Fremont, CA, USA

					ISBN-13 (pbk): 978-1-4842-5573-5

					ISBN-13 (electronic): 978-1-4842-5574-2

					https://doi.org/10.1007/978-1-4842-5574-2

					Copyright © 2021 by Intel Corporation

					This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned,

					specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other

					physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar

					methodology now known or hereafter developed.

					Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International

					License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution

					and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and

					the source, provide a link to the Creative Commons license and indicate if changes were made.

					The images or other third party material in this book are included in the book’s Creative Commons license, unless indicated otherwise in

					a credit line to the material. If material is not included in the book’s Creative Commons license and your intended use is not permitted by

					statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

					Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a

					trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark

					owner, with no intention of infringement of the trademark.

					The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to

					be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

					Intel, the Intel logo, Intel Optane, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries. Khronos and the

					Khronos Group logo are trademarks of the Khronos Group Inc. in the U.S. and/or other countries. OpenCL and the OpenCL logo are

					trademarks of Apple Inc. in the U.S. and/or other countries. OpenMP and the OpenMP logo are trademarks of the OpenMP Architecture

					Review Board in the U.S. and/or other countries. SYCL and the SYCL logo are trademarks of the Khronos Group Inc. in the U.S. and/or

					other countries.

					Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

					Performance tests are measured using specific computer systems, components, software, operations and functions. Any change to any of

					those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating

					your contemplated purchases, including the performance of that product when combined with other products. For more complete

					information visit www.intel.com/benchmarks. Performance results are based on testing as of dates shown in configuration and may not

					reflect all publicly available security updates. See configuration disclosure for details. No product or component can be absolutely secure.

					Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service

					activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your

					system manufacturer or retailer or learn more at www.intel.com. Intel’s compilers may or may not optimize to the same degree for

					non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and

					SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any

					optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for

					use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors.

					Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by

					this notice. Notice revision #20110804.

					While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the

					editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no

					warranty, express or implied, with respect to the material contained herein.

					Managing Director, Apress Media LLC: Welmoed Spahr

					Acquisitions Editor: Natalie Pao

					Development Editor: James Markham

					Coordinating Editor: Jessica Vakili

					Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 NY Plaza, New York, NY 10004. Phone

					1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a

					California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is

					a Delaware corporation.

					For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback, or audio rights, please

					e-mail bookpermissions@springernature.com.

					Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are also available for

					most titles. For more information, reference our Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

					Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub via the book’s

					product page, located at www.apress.com/978-1-4842-5573-5. For more detailed information, please visit http://www.apress.com/

					source-code.

					Printed on acid-free paper

					www. dbooks . or g

				

			

		

		
			
				
					Table of Contents

					About the Authors���xvii

					Preface ��xix

					Acknowledgments���xxiii

					Chapter 1: Introduction���1

					Read the Book, Not the Spec ��2

					SYCL 1�2�1 vs� SYCL 2020, and DPC++���3

					Getting a DPC++ Compiler��4

					Book GitHub ��4

					Hello, World! and a SYCL Program Dissection���5

					Queues and Actions ��6

					It Is All About Parallelism ��7

					Throughput��7

					Latency��8

					Think Parallel���8

					Amdahl and Gustafson ��9

					Scaling���9

					Heterogeneous Systems��10

					Data-Parallel Programming���11

					Key Attributes of DPC++ and SYCL���12

					Single-Source��12

					Host ���13

					Devices��13

					iii

				

			

		

		
			
				
					Table of ConTenTs

					Kernel Code���14

					Asynchronous Task Graphs��15

					C++ Lambda Functions���18

					Portability and Direct Programming ��21

					Concurrency vs� Parallelism��22

					Summary���23

					Chapter 2: Where Code Executes��25

					Single-Source ���26

					Host Code ��27

					Device Code���28

					Choosing Devices��29

					Method#1: Run on a Device of Any Type ���30

					Queues ��31

					Binding a Queue to a Device, When Any Device Will Do ��������������������������������34

					Method#2: Using the Host Device for Development and Debugging�������������������35

					Method#3: Using a GPU (or Other Accelerators)��38

					Device Types��38

					Device Selectors��39

					Method#4: Using Multiple Devices��43

					Method#5: Custom (Very Specific) Device Selection ��45

					device_selector Base Class���45

					Mechanisms to Score a Device ���46

					Three Paths to Device Code Execution on CPU���46

					Creating Work on a Device��48

					Introducing the Task Graph��48

					Where Is the Device Code?��50

					iv

					www. dbooks . or g

				

			

		

		
			
				
					Table of ConTenTs

					Actions���53

					Fallback���56

					Summary���58

					Chapter 3: Data Management���61

					Introduction���62

					The Data Management Problem ���63

					Device Local vs� Device Remote ���63

					Managing Multiple Memories ���64

					Explicit Data Movement���64

					Implicit Data Movement���65

					Selecting the Right Strategy��66

					USM, Buffers, and Images���66

					Unified Shared Memory ��67

					Accessing Memory Through Pointers��67

					USM and Data Movement��68

					Buffers ��71

					Creating Buffers ��72

					Accessing Buffers��72

					Access Modes ���74

					Ordering the Uses of Data���75

					In-order Queues���77

					Out-of-Order (OoO) Queues ���78

					Explicit Dependences with Events���78

					Implicit Dependences with Accessors���80

					Choosing a Data Management Strategy��86

					Handler Class: Key Members ��87

					Summary���90

					v

				

			

		

		
			
				
					Table of ConTenTs

					Chapter 4: Expressing Parallelism��91

					Parallelism Within Kernels ��92

					Multidimensional Kernels��93

					Loops vs� Kernels ��95

					Overview of Language Features ���97

					Separating Kernels from Host Code ��97

					Different Forms of Parallel Kernels ���98

					Basic Data-Parallel Kernels ��99

					Understanding Basic Data-Parallel Kernels���99

					Writing Basic Data-Parallel Kernels ��100

					Details of Basic Data-Parallel Kernels���103

					Explicit ND-Range Kernels��106

					Understanding Explicit ND-Range Parallel Kernels �������������������������������������107

					Writing Explicit ND-Range Data-Parallel Kernels ��112

					Details of Explicit ND-Range Data-Parallel Kernels�������������������������������������113

					Hierarchical Parallel Kernels���118

					Understanding Hierarchical Data-Parallel Kernels ��������������������������������������119

					Writing Hierarchical Data-Parallel Kernels��119

					Details of Hierarchical Data-Parallel Kernels ��122

					Mapping Computation to Work-Items ���124

					One-to-One Mapping���125

					Many-to-One Mapping���125

					Choosing a Kernel Form��127

					Summary���129

					vi

					www. dbooks . or g

				

			

		

		
			
				
					Table of ConTenTs

					Chapter 5: Error Handling���131

					Safety First��132

					Types of Errors��133

					Let’s Create Some Errors!���135

					Synchronous Error���135

					Asynchronous Error���136

					Application Error Handling Strategy��138

					Ignoring Error Handling ���138

					Synchronous Error Handling��140

					Asynchronous Error Handling��141

					Errors on a Device���146

					Summary���147

					Chapter 6: Unified Shared Memory���149

					Why Should We Use USM?��150

					Allocation Types ��150

					Device Allocations ���151

					Host Allocations���151

					Shared Allocations���151

					Allocating Memory��152

					What Do We Need to Know?��153

					Multiple Styles���154

					Deallocating Memory���159

					Allocation Example��159

					Data Management���160

					Initialization���160

					Data Movement ���161

					Queries��168

					Summary���170

					vii

				

			

		

		
			
				
					Table of ConTenTs

					Chapter 7: Buffers���173

					Buffers ��174

					Creation���175

					What Can We Do with a Buffer?���181

					Accessors��182

					Accessor Creation��185

					What Can We Do with an Accessor?��191

					Summary���192

					Chapter 8: Scheduling Kernels and Data Movement ������������������������195

					What Is Graph Scheduling?���196

					How Graphs Work in DPC++���197

					Command Group Actions���198

					How Command Groups Declare Dependences��198

					Examples���199

					When Are the Parts of a CG Executed?��206

					Data Movement���206

					Explicit���207

					Implicit���208

					Synchronizing with the Host ���209

					Summary���211

					Chapter 9: Communication and Synchronization �����������������������������213

					Work-Groups and Work-Items���214

					Building Blocks for Efficient Communication��215

					Synchronization via Barriers ���215

					Work-Group Local Memory��217

					viii

					www. dbooks . or g

				

			

		

		
			
				
					Table of ConTenTs

					Using Work-Group Barriers and Local Memory���219

					Work-Group Barriers and Local Memory in ND-Range Kernels�������������������223

					Work-Group Barriers and Local Memory in Hierarchical Kernels����������������226

					Sub-Groups���230

					Synchronization via Sub-Group Barriers ���230

					Exchanging Data Within a Sub-Group��231

					A Full Sub-Group ND-Range Kernel Example ��233

					Collective Functions��234

					Broadcast ��234

					Votes��235

					Shuffles ���235

					Loads and Stores���238

					Summary���239

					Chapter 10: Defining Kernels��241

					Why Three Ways to Represent a Kernel? ��242

					Kernels As Lambda Expressions���244

					Elements of a Kernel Lambda Expression���244

					Naming Kernel Lambda Expressions���247

					Kernels As Named Function Objects���248

					Elements of a Kernel Named Function Object���249

					Interoperability with Other APIs ��251

					Interoperability with API-Defined Source Languages����������������������������������252

					Interoperability with API-Defined Kernel Objects ��253

					Kernels in Program Objects ��255

					Summary���257

					ix

				

			

		

		
			
				
					Table of ConTenTs

					Chapter 11: Vectors��259

					How to Think About Vectors ��260

					Vector Types��263

					Vector Interface���264

					Load and Store Member Functions ���267

					Swizzle Operations��269

					Vector Execution Within a Parallel Kernel���270

					Vector Parallelism���274

					Summary���275

					Chapter 12: Device Information��277

					Refining Kernel Code to Be More Prescriptive��278

					How to Enumerate Devices and Capabilities ��280

					Custom Device Selector ��281

					Being Curious: get_info<> ��285

					Being More Curious: Detailed Enumeration Code��286

					Inquisitive: get_info<>��288

					Device Information Descriptors���288

					Device-Specific Kernel Information Descriptors���288

					The Specifics: Those of “Correctness”��289

					Device Queries���290

					Kernel Queries���292

					The Specifics: Those of “Tuning/Optimization”���293

					Device Queries���293

					Kernel Queries���294

					Runtime vs� Compile-Time Properties ��294

					Summary���295

					x

					www. dbooks . or g

				

			

		

		
			
				
					Table of ConTenTs

					Chapter 13: Practical Tips ��297

					Getting a DPC++ Compiler and Code Samples���297

					Online Forum and Documentation ��298

					Platform Model��298

					Multiarchitecture Binaries���300

					Compilation Model���300

					Adding SYCL to Existing C++ Programs ���303

					Debugging���305

					Debugging Kernel Code���306

					Debugging Runtime Failures ���307

					Initializing Data and Accessing Kernel Outputs ��310

					Multiple Translation Units��319

					Performance Implications of Multiple Translation Units������������������������������320

					When Anonymous Lambdas Need Names ��320

					Migrating from CUDA to SYCL���321

					Summary���322

					Chapter 14: Common Parallel Patterns���323

					Understanding the Patterns ��324

					Map��325

					Stencil ���326

					Reduction ��328

					Scan���330

					Pack and Unpack���332

					Using Built-In Functions and Libraries��333

					The DPC++ Reduction Library���334

					oneAPI DPC++ Library���339

					Group Functions ��340

					xi

				

			

		

		
			
				
					Table of ConTenTs

					Direct Programming��341

					Map��341

					Stencil ���342

					Reduction ��344

					Scan���345

					Pack and Unpack���348

					Summary���351

					For More Information���351

					Chapter 15: Programming for GPUs��353

					Performance Caveats��354

					How GPUs Work���354

					GPU Building Blocks ��354

					Simpler Processors (but More of Them)��356

					Simplified Control Logic (SIMD Instructions)���361

					Switching Work to Hide Latency��367

					Offloading Kernels to GPUs���369

					SYCL Runtime Library��369

					GPU Software Drivers ��370

					GPU Hardware ���371

					Beware the Cost of Offloading!��372

					GPU Kernel Best Practices ��374

					Accessing Global Memory���374

					Accessing Work-Group Local Memory���378

					Avoiding Local Memory Entirely with Sub-Groups ��������������������������������������380

					Optimizing Computation Using Small Data Types��381

					Optimizing Math Functions��382

					Specialized Functions and Extensions ��382

					Summary���383

					For More Information���384

					xii

					www. dbooks . or g

				

			

		

		
			
				
					Table of ConTenTs

					Chapter 16: Programming for CPUs��387

					Performance Caveats��388

					The Basics of a General-Purpose CPU ��389

					The Basics of SIMD Hardware���391

					Exploiting Thread-Level Parallelism��398

					Thread Affinity Insight ���401

					Be Mindful of First Touch to Memory���405

					SIMD Vectorization on CPU��406

					Ensure SIMD Execution Legality��407

					SIMD Masking and Cost ��409

					Avoid Array-of-Struct for SIMD Efficiency ���411

					Data Type Impact on SIMD Efficiency��413

					SIMD Execution Using single_task��415

					Summary���417

					Chapter 17: Programming for FPGAs��419

					Performance Caveats��420

					How to Think About FPGAs��420

					Pipeline Parallelism���424

					Kernels Consume Chip “Area”���427

					When to Use an FPGA��428

					Lots and Lots of Work��428

					Custom Operations or Operation Widths��429

					Scalar Data Flow ���430

					Low Latency and Rich Connectivity���431

					Customized Memory Systems���432

					Running on an FPGA ���433

					Compile Times���435

					xiii

				

			

		

		
			
				
					Table of ConTenTs

					Writing Kernels for FPGAs���440

					Exposing Parallelism ���440

					Pipes��456

					Custom Memory Systems��462

					Some Closing Topics ���465

					FPGA Building Blocks ��465

					Clock Frequency��467

					Summary���468

					Chapter 18: Libraries��471

					Built-In Functions��472

					Use the sycl:: Prefix with Built-In Functions��474

					DPC++ Library ��478

					Standard C++ APIs in DPC++��479

					DPC++ Parallel STL���483

					Error Handling with DPC++ Execution Policies���492

					Summary���492

					Chapter 19: Memory Model and Atomics ���495

					What Is in a Memory Model? ��497

					Data Races and Synchronization���498

					Barriers and Fences ��501

					Atomic Operations���503

					Memory Ordering���504

					The Memory Model ���506

					The memory_order Enumeration Class���508

					The memory_scope Enumeration Class ���511

					Querying Device Capabilities���512

					Barriers and Fences ��514

					xiv

					www. dbooks . or g

				

			

		

		
			
				
					Table of ConTenTs

					Atomic Operations in DPC++���515

					Using Atomics in Real Life ��523

					Computing a Histogram���523

					Implementing Device-Wide Synchronization���525

					Summary���528

					For More Information���529

					Epilogue: Future Direction of DPC++��531

					Alignment with C++20 and C++23���532

					Address Spaces ��534

					Extension and Specialization Mechanism���536

					Hierarchical Parallelism��537

					Summary���538

					For More Information���539

					Index���541

					xv

				

			

		

		
			
				
					About the Authors

					James Reinders is a consultant with more than three decades of

					experience in parallel computing and is an author/coauthor/editor of

					ten technical books related to parallel programming. He has had the

					great fortune to help make key contributions to two of the world’s fastest

					computers (#1 on the TOP500 list) as well as many other supercomputers

					and software developer tools. James finished 10,001 days (over 27 years)

					at Intel in mid-2016, and he continues to write, teach, program, and

					consult in areas related to parallel computing (HPC and AI).

					Ben Ashbaugh is a Software Architect at Intel Corporation where he has

					worked for over 20 years developing software drivers for Intel graphics

					products. For the past 10 years, Ben has focused on parallel programming

					models for general-purpose computation on graphics processors,

					including SYCL and DPC++. Ben is active in the Khronos SYCL, OpenCL,

					and SPIR working groups, helping to define industry standards for parallel

					programming, and he has authored numerous extensions to expose

					unique Intel GPU features.

					James Brodman is a software engineer at Intel Corporation working

					on runtimes and compilers for parallel programming, and he is one of

					the architects of DPC++. He has a Ph.D. in Computer Science from the

					University of Illinois at Urbana-Champaign.

					Michael Kinsner is a Principal Engineer at Intel Corporation developing

					parallel programming languages and models for a variety of architectures,

					and he is one of the architects of DPC++. He contributes extensively to

					spatial programming models and compilers, and is an Intel representative

					within The Khronos Group where he works on the SYCL and OpenCL

					xvii

					www. dbooks . or g

				

			

		

		
			
				
					abouT The auThors

					industry standards for parallel programming. Mike has a Ph.D. in

					Computer Engineering from McMaster University, and is passionate

					about programming models that cross architectures while still enabling

					performance.

					John Pennycook is an HPC Application Engineer at Intel Corporation,

					focused on enabling developers to fully utilize the parallelism available

					in modern processors. He is experienced in optimizing and parallelizing

					applications from a range of scientific domains, and previously served

					as Intel’s representative on the steering committee for the Intel eXtreme

					Performance User’s Group (IXPUG). John has a Ph.D. in Computer

					Science from the University of Warwick. His research interests are varied,

					but a recurring theme is the ability to achieve application “performance

					portability” across different hardware architectures.

					Xinmin Tian is a Senior Principal Engineer and Compiler Architect at Intel

					Corporation, and serves as Intel’s representative on OpenMP Architecture

					Review Board (ARB). He is responsible for driving OpenMP offloading,

					vectorization, and parallelization compiler technologies for current and

					future Intel architectures. His current focus is on LLVM-based OpenMP

					offloading, DPC++ compiler optimizations for Intel oneAPI Toolkits for

					CPU and Xe accelerators, and tuning HPC/AI application performance.

					He has a Ph.D. in Computer Science, holds 27 U.S. patents, has published

					over 60 technical papers with over 1200 citations of his work, and has co-

					authored two books that span his expertise.

					xviii

				

			

		

		
			
				
					
				
			

			
				
					Preface

					scheduling

					s

					s

					Address

					Spaces

					e

					C++

					ors

					utur

					F

					fer

					s

					USM

					uf

					e

					b

					c

					c

					ernels

					a

					k

					s p e c i a l i z e

					e x t e n d

					memory

					model

					queue

					devices

					. ||ism

					hier

					lambda

					THINK

					y

					S

					Y

					CL

					CL

					Y

					S

					P

					A

					buil

					t-ins

					R

					atomics

					ALLEL

					DPC++

					librar

					s

					s y n c

					onos

					r

					Kh

					C++17

					rm

					fo

					plat

					pack/unpack

					gather/scatter

					GPU

					model

					get_info<>

					data parallelism

					g

					in

					misc

					g

					debug

					e

					thread

					affinity

					FPGA

					emulator

					p

					SIMD

					stencil

					e d u c

					m a

					r

					p i p e s

					This book is about programming for data parallelism using C++. If you are

					new to parallel programming, that is okay. If you have never heard of SYCL

					or the DPC++ compiler, that is also okay.

					SYCL is an industry-driven Khronos standard adding data parallelism

					to C++ for heterogeneous systems. DPC++ is an open source compiler

					project that is based on SYCL, a few extensions, and broad heterogeneous

					support that includes GPU, CPU, and FPGA support. All examples in this

					book compile and work with DPC++ compilers.

					xix

					www. dbooks . or g

				

			

		

		
			
				
					PrefaCe

					If you are a C programmer who is not well versed in C++, you are in

					good company. Several of the authors of this book happily admit that we

					picked up C++ by reading books that used C++ like this one. With a little

					patience, this book should be approachable by C programmers with a

					desire to write modern C++ programs.

					Continuing to Evolve

					When this book project began in 2019, our vision for fully supporting C++

					with data parallelism required a number of extensions beyond the then-

					current SYCL 1.2.1 standard. These extensions, supported by the DPC++

					compiler, included support for Unified Shared Memory (USM), sub-

					groups to complete a three-level hierarchy throughout SYCL, anonymous

					lambdas, and numerous programming simplifications.

					At the time that this book is being published (late 2020), a provisional

					SYCL 2020 specification is available for public comment. The provisional

					specification includes support for USM, sub-groups, anonymous lambdas,

					and simplifications for coding (akin to C++17 CTAD). This book teaches

					SYCL with extensions to approximate where SYCL will be in the future.

					These extensions are implemented in the DPC++ compiler project. While

					we expect changes to be small compared to the bulk of what this book

					teaches, there will be changes with SYCL as the community helps refine

					it. Important resources for updated information include the book GitHub

					and errata that can be found from the web page for this book (www.apress.

					com/9781484255735), as well as the oneAPI DPC++ language reference

					(tinyurl.com/dpcppref).

					xx

				

			

		

		
			
				
					
				
			

			
				
					PrefaCe

					The evolution of SYCL and DPC++ continues. Prospects for the future

					are discussed in the Epilogue, after we have taken a journey together to

					learn how to use DPC++ to create programs for heterogeneous systems

					using SYCL.

					It is our hope that our book supports and helps grow the SYCL

					community, and helps promote data-parallel programming in C++.

					Structure of This Book

					It is hard to leap in and explain everything at once. In fact, it is impossible as

					far as we know. Therefore, this book is a journey that takes us through what

					we need to know to be an effective programmer with Data Parallel C++.

					Chapter 1 lays the first foundation by covering core concepts that are

					either new or worth refreshing in our minds.

					Chapters 2–4 lay a foundation of understanding for data-parallel

					programming C++. When we finish with reading Chapters 1–4,

					we will have a solid foundation for data-parallel programming in C++.

					Chapters 1–4 build on each other, and are best read in order.

					e

					r

					u

					t

					u

					F

					e

					c

					i

					t

					patterns tips

					libraries

					memory models

					CPUs FPGAs

					c

					a

					r

					P

					atomics

					GPUs

					n

					I

					Ch 13-19

					Ch 5-12

					Ch 1-4

					s

					l

					i

					a

					t

					e

					error handling scheduling

					communication vector devices

					D

					Welcome

					to

					n

					o

					i

					t

					a

					d

					n

					u

					DPC ++

					queue

					buffer

					USM

					kernel

					o

					F

					accessor

					xxi

					www. dbooks . or g

				

			

		

		
			
				
					PrefaCe

					Chapters 5–19 fill in important details by building on each other

					to some degree while being easy to jump between if desired. The book

					concludes with an Epilogue that discusses likely and possible future

					directions for Data Parallel C++.

					We wish you the best as you learn to use SYCL and DPC++.

					James Reinders

					Ben Ashbaugh

					James Brodman

					Michael Kinsner

					John Pennycook

					Xinmin Tian

					October 2020

					xxii

				

			

		

		
			
				
					Acknowledgments

					We all get to new heights by building on the work of others. Isaac Newton

					gave credit for his success from “standing on the shoulders of giants.” We

					would all be in trouble if this was not allowed.

					Perhaps there is no easy path to writing a new book on an exciting new

					developments such as SYCL and DPC++. Fortunately, there are good people

					who make that path easier—it is our great joy to thank them for their help!

					We are deeply thankful for all those whose work has helped make this

					book possible, and we do wish to thank as many as we can recall by name.

					If we stood on your shoulders and did not call you out by name, you can

					know we are thankful, and please accept our apologies for any accidental

					forgetfulness.

					A handful of people tirelessly read our early manuscripts and provided

					insightful feedback for which we are very grateful. These reviewers include

					Jefferson Amstutz, Thomas Applencourt, Alexey Bader, Gordon Brown,

					Konstantin Bobrovsky, Robert Cohn, Jessica Davies, Tom Deakin, Abhishek

					Deshmukh, Bill Dieter, Max Domeika, Todd Erdner, John Freeman, Joe

					Garvey, Nithin George, Milind Girkar, Sunny Gogar, Jeff Hammond,

					Tommy Hoffner, Zheming Jin, Paul Jurczak, Audrey Kertesz, Evgueny

					Khartchenko, Jeongnim Kim, Rakshith Krishnappa, Goutham Kalikrishna

					Reddy Kuncham, Victor Lomüller, Susan Meredith, Paul Petersen, Felipe

					De Azevedo Piovezan, Ruyman Reyes, Jason Sewall, Byron Sinclair,

					Philippe Thierry, and Peter Žužek.

					We thank the entire development team at Intel who created DPC++

					including its libraries and documentation, without which this book would

					not be possible.

					xxiii

					www. dbooks . or g

				

			

		

		
			
				
					aCknowledgmenTs

					The Khronos SYCL working group and Codeplay are giants on

					which we have relied. We share, with them, the goal of bringing effective

					and usable data parallelism to C++. We thank all those involved in the

					development of the SYCL specification. Their tireless work to bring forward

					a truly open standard for the entire industry is to be admired. The SYCL

					team has been true to its mission and desire to keep this standard really

					open. We also highly appreciate the trailblazing work done by Codeplay, to

					promote and support SYCL before DPC++ was even a glimmer in our eyes.

					They continue to be an important resource for the entire community.

					Many people within Intel have contributed extensively to DPC++ and

					SYCL—too many to name here. We thank all of you for your hard work,

					both in the evolution of the language and APIs and in the implementation

					of prototypes, compilers, libraries, and tools. Although we can’t name

					everyone, we would like to specifically thank some of the key language

					evolution architects who have made transformative contributions to

					DPC++ and SYCL: Roland Schulz, Alexey Bader, Jason Sewall, Alex

					Wells, Ilya Burylov, Greg Lueck, Alexey Kukanov, Ruslan Arutyunyan, Jeff

					Hammond, Erich Keane, and Konstantin Bobrovsky.

					We appreciate the patience and dedication of the DPC++ user

					community. The developers at Argonne National Lab have been incredibly

					supportive in our journey together with DPC++.

					As coauthors, we cannot adequately thank each other enough. We

					came together in early 2019, with a vision that we would write a book to

					teach SYCL and DPC++. Over the next year, we became a team that learned

					how to teach together. We faced challenges from many commitments that

					tried to pull us away from book writing and reviewing, including product

					deadlines and standards work. Added to the mix for the entire world was

					COVID-19. We are a little embarrassed to admit that the stay-at-home

					orders gave us a non-trivial boost in time and focus for the book. Our

					thoughts and prayers extend to all those affected by this global pandemic.

					xxiv

				

			

		

		
			
				
					aCknowledgmenTs

					James Reinders: I wish to thank Jefferson Amstutz for enlightening

					discussions of parallelism in C++ and some critically useful help to get

					some C++ coding straight by using Jefferson’s superpower as C++ compiler

					error message whisperer. I thank my wife, Susan Meredith, for her love,

					support, advice, and review. I am grateful for those in Intel who thought

					I would enjoy helping with this project and asked me to join in the fun!

					Many thanks to coauthors for their patience (with me) and hard work on

					this ambitious project.

					Ben Ashbaugh: I am grateful for the support and encouragement of my

					wife, Brenna, and son, Spencer. Thank you for the uninterrupted writing

					time, and for excuses to go for a walk or play games when I needed a break!

					To everyone in the Khronos SYCL and OpenCL working groups, thank you

					for the discussion, collaboration, and inspiration. DPC++ and this book

					would not be possible without you.

					James Brodman: I thank my family and friends for all their support.

					Thanks to all my colleagues at Intel and in Khronos for great discussions

					and collaborations.

					Michael Kinsner: I thank my wife, Jasmine, and children, Winston and

					Tilly, for their support during the writing of this book and throughout

					the DPC++ project. Both have required a lot of time and energy, and I

					wouldn’t have been able to do either without so much support. A thank

					you also goes to many people at Intel and Khronos who have poured their

					energy and time into SYCL and DPC++. All of you have shaped SYCL,

					OpenCL, and DPC++ and have been part of the countless discussions and

					experiments that have informed the thinking leading to DPC++ and this

					book.

					John Pennycook: I cannot thank my wife, Louise, enough for her patience,

					understanding, and support in juggling book writing with care of our

					newborn daughter, Tamsyn. Thanks also to Roland Schulz and Jason

					Sewall for all of their work on DPC++ and their assistance in making sense

					of C++ compiler errors!

					xxv

					www. dbooks . or g

				

			

		

		
			
				
					aCknowledgmenTs

					Xinmin Tian: I appreciate Alice S. Chan and Geoff Lowney for their

					strong support during the writing of the book and throughout the DPC++

					performance work. Sincere thanks to Guei-Yuan Lueh, Konstantin

					Bobrovsky, Hideki Saito, Kaiyu Chen, Mikhail Loenko, Silvia Linares, Pavel

					Chupin, Oleg Maslov, Sergey Maslov, Vlad Romanov, Alexey Sotkin, Alexey

					Sachkov, and the entire DPC++ compiler and runtime and tools teams for

					all of their great contributions and hard work in making DPC++ compiler

					and tools possible.

					We appreciate the hard work by the entire Apress team, including the

					people we worked with directly the most: Natalie Pao, Jessica Vakili,

					C Dulcy Nirmala, and Krishnan Sathyamurthy.

					We were blessed with the support and encouragement of some special

					managers, including Herb Hinstorff, Bill Savage, Alice S. Chan, Victor Lee,

					Ann Bynum, John Kreatsoulas, Geoff Lowney, Zack Waters, Sanjiv Shah,

					John Freeman, and Kevin Stevens.

					Numerous colleagues offered information, advice, and vision. We

					are sure that there are more than a few people whom we have failed to

					mention who have positively impacted this book project. We thank all

					those who helped by slipping in their ingredients into our book project.

					We apologize to all who helped us and were not mentioned here.

					Thank you all, and we hope you find this book invaluable in your

					endeavors.

					xxvi

				

			

		

		
			
				
					
				
			

			
				
					CHAPTER 1

					Introduction

					lambdas

					THINK

					ALLEL

					CL

					Y

					P

					AR

					S

					onos

					Khr

					C++17

					This chapter lays the foundation by covering core concepts, including

					terminology, that are critical to have fresh in our minds as we learn how to

					accelerate C++ programs using data parallelism.

					Data parallelism in C++ enables access to parallel resources in

					a modern heterogeneous system. A single C++ application can use

					any combination of devices—including GPUs, CPUs, FPGAs, and AI

					Application-Specific Integrated Circuits (ASICs)—that are suitable to the

					problems at hand.

					This book teaches data-parallel programming using C++ and SYCL.

					SYCL (pronounced sickle) is an industry-driven Khronos standard that

					adds data parallelism to C++ for heterogeneous systems. SYCL programs

					perform best when paired with SYCL-aware C++ compilers such as the

					open source Data Parallel C++ (DPC++) compiler used in this book. SYCL

					is not an acronym; SYCL is simply a name.

					© Intel Corporation 2021

					J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-5574-2_1

					1

					www. dbooks . or g

					[bookmark: 27_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 1 IntroduCtIon

					DPC++ is an open source compiler project, initially created by Intel

					employees, committed to strong support of data parallelism in C++.

					The DPC++ compiler is based on SYCL, a few extensions,1 and broad

					heterogeneous support that includes GPU, CPU, and FPGA devices. In

					addition to the open source version of DPC++, there are commercial

					versions available in Intel oneAPI toolkits.

					Implemented features based on SYCL are supported by both the open

					source and commercial versions of the DPC++ compilers. All examples

					in this book compile and work with either version of the DPC++ compiler,

					and almost all will compile with recent SYCL compilers. We are careful

					to note where extensions are used that are DPC++ specific at the time of

					publication.

					Read the Book, Not the Spec

					No one wants to be told “Go read the spec!” Specifications are hard to

					read, and the SYCL specification is no different. Like every great language

					specification, it is full of precision and light on motivation, usage, and

					teaching. This book is a “study guide” to teach SYCL and use of the DPC++

					compiler.

					As mentioned in the Preface, this book cannot explain everything at

					once. Therefore, this chapter does what no other chapter will do: the code

					examples contain programming constructs that go unexplained until

					future chapters. We should try to not get hung up on understanding the

					coding examples completely in Chapter 1 and trust it will get better with

					each chapter.

					1The DPC++ team is quick to point out that they hope all their extensions will be

					considered, and hopefully accepted, by the SYCL standard at some time in the

					future.

					2

					[bookmark: 28_0]
					[bookmark: 28_1]
				

			

		

		
			
				
					Chapter 1 IntroduCtIon

					SYCL 1.2.1 vs. SYCL 2020, and DPC++

					As this book goes to press, the provisional SYCL 2020 specification is

					available for public comments. In time, there will be a successor to

					the current SYCL 1.2.1 standard. That anticipated successor has been

					informally referred to as SYCL 2020. While it would be nice to say that this

					book teaches SYCL 2020, that is not possible because that standard does

					not yet exist.

					This book teaches SYCL with extensions, to approximate where SYCL

					will be in the future. These extensions are implemented in the DPC++

					compiler project. Almost all the extensions implemented in DPC++ exist

					as new features in the provisional SYCL 2020 specification. Notable new

					features that DPC++ supports are USM, sub-groups, syntax simplifications

					enabled by C++17 (known as CTAD—class template argument deduction),

					and the ability to use anonymous lambdas without having to name them.

					At publication time, no SYCL compiler (including DPC++) exists that

					implements all the functionality in the SYCL 2020 provisional specification.

					Some of the features used in this book are specific to the DPC++

					compiler. Many of these features were originally Intel extensions to

					SYCL that have since been accepted into the SYCL 2020 provisional

					specification, and in some cases their syntax has changed slightly during

					the standardization process. Other features are still being developed or are

					under discussion for possible inclusion in future SYCL standards, and their

					syntax may similarly be modified. Such syntax changes are actually highly

					desirable during language development, as we want features to evolve

					and improve to address the needs of wider groups of developers and the

					capabilities of a wide range of devices. All of the code samples in this book

					use the DPC++ syntax to ensure compatibility with the DPC++ compiler.

					While endeavoring to approximate where SYCL is headed, there will

					almost certainly need to be adjustments to information in this book to

					align with the standard as it evolves. Important resources for updated

					3

					www. dbooks . or g

					[bookmark: 29_0]
					[bookmark: 29_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 1 IntroduCtIon

					information include the book GitHub and errata that can be found from

					the web page for this book (www.apress.com/9781484255735), as well as

					the online oneAPI DPC++ language reference (tinyurl.com/dpcppref).

					Getting a DPC++ Compiler

					DPC++ is available from a GitHub repository (github.com/intel/llvm).

					Getting started with DPC++ instructions, including how to build the open

					source compiler with a clone from GitHub, can be found at intel.github.io/

					llvm-docs/GetStartedGuide.html.

					There are also bundled versions of the DPC++ compiler, augmented

					with additional tools and libraries for DPC++ programming and support,

					available as part of a larger oneAPI project. The project brings broad

					support for heterogeneous systems, which include libraries, debuggers,

					and other tools, known as oneAPI. The oneAPI tools, including DPC++,

					are available freely (oneapi.com/implementations). The official oneAPI

					DPC++ Compiler Documentation, including a list of extensions, can be

					found at intel.github.io/llvm-docs.

					the online companion to this book, the oneapI dpC++ language

					reference online, is a great resource for more formal details building

					upon what is taught in this book.

					Book GitHub

					Shortly we will encounter code in Figure 1-1. If we want to avoid typing it

					all in, we can easily download all the examples in this book from a GitHub

					repository (www.apress.com/9781484255735—look for Services for this

					book: Source Code). The repository includes the complete code with build

					files, since most code listings omit details that are repetitive or otherwise

					4

					[bookmark: 30_0]
					[bookmark: 30_1]
					[bookmark: 30_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 1 IntroduCtIon

					unnecessary for illustrating a point. The repository has the latest versions

					of the examples, which is handy if any are updated.

					1. #include <CL/sycl.hpp>

					2. #include <iostream>

					3. using namespace sycl;

					4.

					5. const std::string secret {

					6. "Ifmmp-!xpsme\"\012J(n!tpssz-!Ebwf/!"

					7. "J(n!bgsbje!J!dbo(u!ep!uibu/!.!IBM\01"};

					8. const auto sz = secret.size();

					9.

					10. int main() {

					11. queue Q;

					12.

					13. char*result = malloc_shared<char>(sz, Q);

					14. std::memcpy(result,secret.data(),sz);

					15.

					16. Q.parallel_for(sz,[=](auto&i) {

					17.

					18.

					19.

					result[i] -= 1;

					}).wait();

					20. std::cout << result << "\n";

					21. return 0;

					22. }

					Figure 1-1. Hello data-parallel programming

					Hello, World! and a SYCL Program

					Dissection

					Figure 1-1 shows a sample SYCL program. Compiling with the DPC++

					compiler, and running it, results in the following being printed:

					Hello, world! (and some additional text left to experience by running it)

					We will completely understand this particular example by the end

					of Chapter 4. Until then, we can observe the single include of <CL/sycl.

					hpp>(line 1) that is needed to define all the SYCL constructs. All SYCL

					constructs live inside a namespace called sycl:

					5

					www. dbooks . or g

					[bookmark: 31_0]
					[bookmark: 31_1]
				

			

		

		
			
				
					Chapter 1 IntroduCtIon

					•

					•

					Line 3 lets us avoid writing sycl::over and over.

					Line 11 establishes a queue for work requests directed

					to a particular device (Chapter 2).

					•

					Line 13 creates an allocation for data shared with the

					device (Chapter 3).

					•

					•

					Line 16 enqueues work to the device (Chapter 4).

					Line 17 is the only line of code that will run on the

					device. All other code runs on the host (CPU).

					Line 17 is the kernel code that we want to run on devices. That kernel

					code decrements a single character. With the power of parallel_for(),

					that kernel is run on each character in our secret string in order to decode

					it into the resultstring. There is no ordering of the work required, and

					it is actually run asynchronously relative to the main program once the

					parallel_forqueues the work. It is critical that there is a wait (line 18)

					before looking at the result to be sure that the kernel has completed, since

					in this particular example we are using a convenient feature (Unified

					Shared Memory, Chapter 6). Without the wait, the output may occur

					before all the characters have been decrypted. There is much more to

					discuss, but that is the job of later chapters.

					Queues and Actions

					Chapter 2 will discuss queues and actions, but we can start with a simple

					explanation for now. Queues are the only connection that allows an

					application to direct work to be done on a device. There are two types

					of actions that can be placed into a queue: (a) code to execute and (b)

					memory operations. Code to execute is expressed via either single_task,

					parallel_for(used in Figure 1-1), or parallel_for_work_group. Memory

					operations perform copy operations between host and device or fill

					6

					[bookmark: 32_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 1 IntroduCtIon

					operations to initialize memory. We only need to use memory operations

					if we seek more control than what is done automatically for us. These are

					all discussed later in the book starting with Chapter 2. For now, we should

					be aware that queues are the connection that allows us to command a

					device, and we have a set of actions available to put in queues to execute

					code and to move around data. It is also very important to understand

					that requested actions are placed into a queue without waiting. The host,

					after submitting an action into a queue, continues to execute the program,

					while the device will eventually, and asynchronously, perform the action

					requested via the queue.

					Queues connect us to devices.

					We submit actions into these queues to request computational work

					and data movement.

					actions happen asynchronously.

					It Is All About Parallelism

					Since programming in C++ for data parallelism is all about parallelism,

					let’s start with this critical concept. The goal of parallel programming is

					to compute something faster. It turns out there are two aspects to this:

					increased throughput and reduced latency.

					Throughput

					Increasing throughput of a program comes when we get more work done

					in a set amount of time. Techniques like pipelining may actually stretch

					out the time necessary to get a single work-item done, in order to allow

					overlapping of work that leads to more work-per-unit-of-time being

					7

					www. dbooks . or g

					[bookmark: 33_0]
					[bookmark: 33_1]
					[bookmark: 33_2]
				

			

		

		
			
				
					Chapter 1 IntroduCtIon

					done. Humans encounter this often when working together. The very

					act of sharing work involves overhead to coordinate that often slows the

					time to do a single item. However, the power of multiple people leads to

					more throughput. Computers are no different—spreading work to more

					processing cores adds overhead to each unit of work that likely results in

					some delays, but the goal is to get more total work done because we have

					more processing cores working together.

					Latency

					What if we want to get one thing done faster—for instance, analyzing

					a voice command and formulating a response? If we only cared about

					throughput, the response time might grow to be unbearable. The concept

					of latency reduction requires that we break up an item of work into pieces

					that can be tackled in parallel. For throughput, image processing might

					assign whole images to different processing units—in this case, our goal

					may be optimizing for images per second. For latency, image processing

					might assign each pixel within an image to different processing cores—in

					this case, our goal may be maximizing pixels per second from a single

					image.

					Think Parallel

					Successful parallel programmers use both techniques in their

					programming. This is the beginning of our quest to Think Parallel.

					We want to adjust our minds to think first about where parallelism

					can be found in our algorithms and applications. We also think about how

					different ways of expressing the parallelism affect the performance we

					ultimately achieve. That is a lot to take in all at once. The quest to Think

					Parallel becomes a lifelong journey for parallel programmers. We can learn

					a few tips here.

					8

					[bookmark: 34_0]
					[bookmark: 34_1]
				

			

		

		
			
				
					Chapter 1 IntroduCtIon

					Amdahl and Gustafson

					Amdahl’s Law, stated by the supercomputer pioneer Gene Amdahl in

					1967, is a formula to predict the theoretical maximum speed-up when

					using multiple processors. Amdahl lamented that the maximum gain from

					parallelism is limited to (1/(1-p))where pis the fraction of the program

					that runs in parallel. If we only run two-thirds of our program in parallel,

					then the most that program can speed up is a factor of 3. We definitely

					need that concept to sink in deeply! This happens because no matter how

					fast we make that two-thirds of our program run, the other one-third still

					takes the same time to complete. Even if we add one hundred GPUs, we

					would only get a factor of 3 increase in performance.

					For many years, some viewed this as proof that parallel computing

					would not prove fruitful. In 1988, John Gustafson presented an article titled

					“Reevaluating Amdahl’s Law.” He observed that parallelism was not used

					to speed up fixed workloads, but rather it was used to allow work to be

					scaled up. Humans experience the same thing. One delivery person cannot

					deliver a single package faster with the help of many more people and

					trucks. However, a hundred people and trucks can deliver one hundred

					packages more quickly than a single driver with a truck. Multiple drivers

					will definitely increase throughput and will also generally reduce latency

					for package deliveries. Amdahl’s Law tells us that a single driver cannot

					deliver one package faster by adding ninety-nine more drivers with their

					own trucks. Gustafson noticed the opportunity to deliver one hundred

					packages faster with these extra drivers and trucks.

					Scaling

					The word “scaling” appeared in our prior discussion. Scaling is a measure

					of how much a program speeds up (simply referred to as “speed-up”)

					when additional computing is available. Perfect speed-up happens if

					one hundred packages are delivered in the same time as one package,

					9

					www. dbooks . or g

					[bookmark: 35_0]
					[bookmark: 35_1]
					[bookmark: 35_2]
				

			

		

		
			
				
					Chapter 1 IntroduCtIon

					by simply having one hundred trucks with drivers instead of a single

					truck and driver. Of course, it does not quite work that way. At some

					point, there is a bottleneck that limits speed-up. There may not be one

					hundred places for trucks to dock at the distribution center. In a computer

					program, bottlenecks often involve moving data around to where it will

					be processed. Distributing to one hundred trucks is similar to having to

					distribute data to one hundred processing cores. The act of distributing

					is not instantaneous. Chapter 3 will start our journey of exploring how to

					distribute data to where it is needed in a heterogeneous system. It is critical

					that we know that data distribution has a cost, and that cost affects how

					much scaling we can expect from our applications.

					Heterogeneous Systems

					The phrase “heterogeneous system” snuck into the prior paragraph. For

					our purposes, a heterogeneous system is any system which contains

					multiple types of computational devices. For instance, a system with both

					a Central Processing Unit (CPU) and a Graphics Processing Unit (GPU) is

					a heterogeneous system. The CPU is often just called a processor, although

					that can be confusing when we speak of all the processing units in a

					heterogeneous system as compute processors. To avoid this confusion,

					SYCL refers to processing units as devices. Chapter 2 will begin the

					discussion of how to steer work (computations) to particular devices in a

					heterogeneous system.

					GPUs have evolved to become high-performance computing devices

					and therefore are sometimes referred to as General-Purpose GPUs, or

					GPGPUs. For heterogeneous programming purposes, we can simply assume

					we are programming such powerful GPGPUs and refer to them as GPUs.

					Today, the collection of devices in a heterogeneous system can include

					CPUs, GPUs, FPGAs (Field Programmable Gate Arrays), DSPs (Digital

					Signal Processors), ASICs (Application-Specific Integrated Circuits), and AI

					chips (graph, neuromorphic, etc.).

					10

					[bookmark: 36_0]
					[bookmark: 36_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 1 IntroduCtIon

					The design of such devices will generally involve duplication of

					compute processors (multiprocessors) and increased connections

					(increased bandwidth) to data sources such as memory. The first of these,

					multiprocessing, is particularly useful for raising throughput. In our

					analogy, this was done by adding additional drivers and trucks. The latter

					of these, higher bandwidth for data, is particularly useful for reducing

					latency. In our analogy, this was done with more loading docks to enable

					trucks to be fully loaded in parallel.

					Having multiple types of devices, each with different architectures

					and therefore different characteristics, leads to different programming

					and optimization needs for each device. That becomes the motivation

					for SYCL, the DPC++ compiler, and the majority of what this book has to

					teach.

					SYCL was created to address the challenges of C++ data-parallel

					programming for heterogeneous systems.

					Data-Parallel Programming

					The phrase “data-parallel programming” has been lingering unexplained

					ever since the title of this book. Data-parallel programming focuses on

					parallelism that can be envisioned as a bunch of data to operate on in

					parallel. This shift in focus is like Gustafson vs. Amdahl. We need one

					hundred packages to deliver (effectively lots of data) in order to divide

					up the work among one hundred trucks with drivers. The key concept

					comes down to what we should divide. Should we process whole images

					or process them in smaller tiles or process them pixel by pixel? Should

					we analyze a collection of objects as a single collection or a set of smaller

					groupings of objects or object by object?

					11

					www. dbooks . or g

					[bookmark: 37_0]
					[bookmark: 37_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 1 IntroduCtIon

					Choosing the right division of work and mapping that work onto

					computational resources effectively is the responsibility of any parallel

					programmer using SYCL and DPC++. Chapter 4 starts this discussion, and

					it continues through the rest of the book.

					Key Attributes of DPC++ and SYCL

					Every DPC++ (or SYCL) program is also a C++ program. Neither SYCL

					nor DPC++ relies on any language changes to C++. Both can be fully

					implemented with templates and lambda functions.

					The reason SYCL compilers2 exist is to optimize code in a way that

					relies on built-in knowledge of the SYCL specification. A standard C++

					compiler that lacks any built-in knowledge of SYCL cannot lead to the

					same performance levels that are possible with a SYCL-aware compiler.

					Next, we will examine the key attributes of DPC++ and SYCL: single-

					source style, host, devices, kernel code, and asynchronous task graphs.

					Single-Source

					Programs can be single-source, meaning that the same translation unit3

					contains both the code that defines the compute kernels to be executed

					on devices and also the host code that orchestrates execution of those

					compute kernels. Chapter 2 begins with a more detailed look at this

					capability. We can still divide our program source into different files and

					translation units for host and device code if we want to, but the key is that

					we don't have to!

					2It is probably more correct to call it a C++ compiler with support for SYCL.

					3We could just say “file,” but that is not entirely correct here. A translation unit

					is the actual input to the compiler, made from the source file after it has been

					processed by the C preprocessor to inline header files and expand macros.

					12

					[bookmark: 38_0]
					[bookmark: 38_1]
					[bookmark: 38_2]
					[bookmark: 38_3]
					[bookmark: 38_4]
				

			

		

		
			
				
					Chapter 1 IntroduCtIon

					Host

					Every program starts by running on a host, and most of the lines of code in

					a program are usually for the host. Thus far, hosts have always been CPUs.

					The standard does not require this, so we carefully describe it as a host. This

					seems unlikely to be anything other than a CPU because the host needs to

					fully support C++17 in order to support all DPC++ and SYCL programs. As

					we will see shortly, devices do not need to support all of C++17.

					Devices

					Using multiple devices in a program is what makes it heterogeneous

					programming. That’s why the word device has been recurring in this

					chapter since the explanation of heterogeneous systems a few pages ago.

					We already learned that the collection of devices in a heterogeneous

					system can include GPUs, FPGAs, DSPs, ASICs, CPUs, and AI chips, but is

					not limited to any fixed list.

					Devices are the target for acceleration offload that SYCL promises.

					The idea of offloading computations is generally to transfer work to a

					device that can accelerate completion of the work. We have to worry about

					making up for time lost moving data—a topic that needs to constantly be

					on our minds.

					Sharing Devices

					On a system with a device, such as a GPU, we can envision two or more

					programs running and wanting to use a single device. They do not need

					to be programs using SYCL or DPC++. Programs can experience delays in

					processing by the device if another program is currently using it. This is

					really the same philosophy used in C++ programs in general for CPUs. Any

					system can be overloaded if we run too many active programs on our CPU

					(mail, browser, virus scanning, video editing, photo editing, etc.) all at once.

					13

					www. dbooks . or g

					[bookmark: 39_0]
					[bookmark: 39_1]
				

			

		

		
			
				
					Chapter 1 IntroduCtIon

					On supercomputers, when nodes (CPUs + all attached devices) are

					granted exclusively to a single application, sharing is not usually a concern.

					On non-supercomputer systems, we can just note that the performance

					of a Data Parallel C++ program may be impacted if there are multiple

					applications using the same devices at the same time.

					Everything still works, and there is no programming we need to do

					differently.

					Kernel Code

					Code for a device is specified as kernels. This is a concept that is not

					unique to SYCL or DPC++: it is a core concept in other offload acceleration

					languages including OpenCL and CUDA.

					Kernel code has certain restrictions to allow broader device support

					and massive parallelism. The list of features not supported in kernel code

					includes dynamic polymorphism, dynamic memory allocations (therefore

					no object management using new or delete operators), static variables,

					function pointers, runtime type information (RTTI), and exception

					handling. No virtual member functions, and no variadic functions, are

					allowed to be called from kernel code. Recursion is not allowed within

					kernel code.

					Chapter 3 will describe how memory allocations are done before and

					after kernels are invoked, thereby making sure that kernels stay focused

					on massively parallel computations. Chapter 5 will describe handling of

					exceptions that arise in connection with devices.

					The rest of C++ is fair game in a kernel, including lambdas, operator

					overloading, templates, classes, and static polymorphism. We can also

					share data with host (see Chapter 3) and share the read-only values of

					(non-global) host variables (via lambda captures).

					14

					[bookmark: 40_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 1 IntroduCtIon

					Kernel: Vector Addition (DAXPY)

					Kernels should feel familiar to any programmer who has work on

					computationally complex code. Consider implementing DAXPY, which

					stands for “Double-precision A times X Plus Y.” A classic for decades.

					Figure 1-2 shows DAXPY implemented in modern Fortran, C/C++, and

					SYCL. Amazingly, the computation lines (line 3) are virtually identical.

					Chapters 4 and 10 will explain kernels in detail. Figure 1-2 should help

					remove any concerns that kernels are difficult to understand—they should

					feel familiar even if the terminology is new to us.

					1. ! Fortran loop

					2. do i = 1, n

					3. z(i) = alpha * x(i) + y(i)

					4. end do

					1. // C++ loop

					2. for (int i=0;i<n;i++) {

					3. z[i] = alpha * x[i] + y[i];

					4. }

					1. // SYCL kernel

					2. myq.parallel_for(range{n},[=](id<1> i) {

					3. z[i] = alpha * x[i] + y[i];

					4. }).wait();

					Figure 1-2. DAXPY computations in Fortran, C++, and SYCL

					Asynchronous Task Graphs

					The asynchronous nature of programming with SYCL/DPC++ must not

					be missed. Asynchronous programming is critical to understand for two

					reasons: (1) proper use gives us better performance (better scaling), and

					(2) mistakes lead to parallel programming errors (usually race conditions)

					that make our applications unreliable.

					15

					www. dbooks . or g

					[bookmark: 41_0]
					[bookmark: 41_1]
					[bookmark: 41_2]
				

			

		

		
			
				
					Chapter 1 IntroduCtIon

					The asynchronous nature comes about because work is transferred to

					devices via a “queue” of requested actions. The host program submits a

					requested action into a queue, and the program continues without waiting

					for any results. This no waiting is important so that we can try to keep

					computational resources (devices and the host) busy all the time. If we had

					to wait, that would tie up the host instead of allowing the host to do useful

					work. It would also create serial bottlenecks when the device finished, until

					we queued up new work. Amdahl’s Law, as discussed earlier, penalizes

					us for time spent not doing work in parallel. We need to construct our

					programs to be moving data to and from devices while the devices are busy

					and keep all the computational power of the devices and host busy any

					time work is available. Failure to do so will bring the full curse of Amdahl’s

					Law upon us.

					Chapter 4 will start the discussion on thinking of our program as

					an asynchronous task graph, and Chapter 8 greatly expands upon this

					concept.

					Race Conditions When We Make a Mistake

					In our first code example (Figure 1-1), we specifically did a “wait” on line

					18 to prevent line 20 from writing out the value from resultbefore it

					was available. We must keep this asynchronous behavior in mind. There

					is another subtle thing done in that same code example—line 14 uses

					std::memcpyto load the input. Since std::memcpyruns on the host, line 16

					and later do not execute until line 15 has completed. After reading Chapter 3,

					we could be tempted to change this to use myQ.memcpy(using SYCL).

					We have done exactly that in Figure 1-3 in line 8. Since that is a queue

					submission, there is no guarantee that it will complete before line 10. This

					creates a race condition, which is a type of parallel programming bug. A

					race condition exists when two parts of a program access the same data

					without coordination. Since we expect to write data using line 8 and then

					read it in line 10, we do not want a race that might have line 17 execute

					16

					[bookmark: 42_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 1 IntroduCtIon

					before line 8 completes! Such a race condition would make our program

					unpredictable—our program could get different results on different runs

					and on different systems. A fix for this would be to explicitly wait for myQ.

					memcpyto complete before proceeding by adding .wait()to the end of

					line 8. That is not the best fix. We could have used event dependences to

					solve this (Chapter 8). Creating the queue as an ordered queue would also

					add an implicit dependence between the memcpyand the parallel_for.

					As an alternative, in Chapter 7, we will see how a buffer and accessor

					programming style can be used to have SYCL manage the dependences

					and waiting automatically for us.

					1. // ...we are changing one line from Figure 1-1

					2. char *result = malloc_shared<char>(sz, Q);

					3.

					4. // Introduce potential data race!

					5. // We don't define a dependence

					6. // to ensure correct ordering with

					7. // later operations.

					8. Q.memcpy(result,secret.data(),sz);

					9.

					10. Q.parallel_for(sz,[=](auto&i) {

					11. result[i] -= 1;

					12. }).wait();

					13.

					14. // ...

					Figure 1-3. Adding a race condition to illustrate a point about being

					asynchronous

					Adding a wait()forces host synchronization between the memcpyand

					the kernel, which goes against the previous advice to keep the device busy

					all the time. Much of this book covers the different options and tradeoffs

					that balance program simplicity with efficient use of our systems.

					For assistance with detecting data race conditions in a program,

					including kernels, tools such as Intel Inspector (available with the oneAPI

					tools mentioned previously in “Getting a DPC++ Compiler”) can be

					helpful. The somewhat sophisticated methods used by such tools often

					17

					www. dbooks . or g

					[bookmark: 43_0]
					[bookmark: 43_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 1 IntroduCtIon

					do not work on all devices. Detecting race conditions may be best done

					by having all the kernels run on a CPU, which can be done as a debugging

					technique during development work. This debugging tip is discussed as

					Method#2 in Chapter 2.

					Chapter 4 will tell us “lambdas not considered harmful.” We should

					be comfortable with lambda functions in order to use dpC++, SYCL,

					and modern C++ well.

					C++ Lambda Functions

					A feature of modern C++ that is heavily used by parallel programming

					techniques is the lambda function. Kernels (the code to run on a device)

					can be expressed in multiple ways, the most common one being a lambda

					function. Chapter 10 discusses all the various forms that a kernel can take,

					including lambda functions. Here we have a refresher on C++ lambda

					functions plus some notes regarding use to define kernels. Chapter 10

					expands on the kernel aspects after we have learned more about SYCL in

					the intervening chapters.

					The code in Figure 1-3 has a lambda function. We can see it because

					it starts with the very definitive [=]. In C++, lambdas start with a square

					bracket, and information before the closing square bracket denotes how to

					capture variables that are used within the lambda but not explicitly passed

					to it as parameters. For kernels, the capture must be by value which is

					denoted by the inclusion of an equals sign within the brackets.

					Support for lambda expressions was introduced in C++11. They are

					used to create anonymous function objects (although we can assign them

					to named variables) that can capture variables from the enclosing scope.

					The basic syntax for a C++ lambda expression is

					[capture-list] (params) -> ret { body }

					18

					[bookmark: 44_0]
					[bookmark: 44_1]
				

			

		

		
			
				
					Chapter 1 IntroduCtIon

					where

					•

					capture-list is a comma-separated list of captures. We

					capture a variable by value by listing the variable name

					in the capture-list. We capture a variable by reference

					by prefixing it with an ampersand, for example, &v.

					There are also shorthands that apply to all in-scope

					automatic variables: [=]is used to capture all automatic

					variables used in the body by value and the current

					object by reference, [&]is used to capture all automatic

					variables used in the body as well as the current object

					by reference, and []captures nothing. With SYCL, [=]

					is almost always used because no variable is allowed

					to be captured by reference for use in a kernel. Global

					variables are not captured in a lambda, per the C++

					standard. Non-global static variables can be used in a

					kernel but only if they are const.

					•

					•

					params is the list of function parameters, just like for

					a named function. SYCL provides for parameters to

					identify the element(s) the kernel is being invoked to

					process: this can be a unique id (one-dimensional) or a

					2D or 3D id. These are discussed in Chapter 4.

					ret is the return type. If ->ret is not specified, it is

					inferred from the return statements. The lack of a

					return statement, or a return with no value, implies a

					return type of void. SYCL kernels must always have a

					return type of void, so we should not bother with this

					syntax to specify a return type for kernels.

					•

					body is the function body. For a SYCL kernel, the

					contents of this kernel have some restrictions (see

					earlier in this chapter in the “Kernel Code” section).

					19

					www. dbooks . or g

				

			

		

		
			
				
					Chapter 1 IntroduCtIon

					int i = 1, j = 10, k = 100, l = 1000;

					auto lambda = [i, &j] (int k0, int &l0) -> int {

					j = 2* j;

					k0 = 2* k0;

					l0 = 2* l0;

					return i + j + k0 + l0;

					};

					print_values(i, j, k, l);

					std::cout << "First call returned "<< lambda(k, l) << "\n";

					print_values(i, j, k, l);

					std::cout << "Second call returned "<< lambda(k, l) << "\n";

					print_values(i, j, k, l);

					Figure 1-4. Lambda function in C++ code

					i == 1

					j == 10

					k == 100

					l == 1000

					First call returned 2221

					i == 1

					j == 20

					k == 100

					l == 2000

					Second call returned 4241

					i == 1

					j == 40

					k == 100

					l == 4000

					Figure 1-5. Output from the lambda function demonstration code in

					Figure 1-4

					Figure 1-4 shows a C++ lambda expression that captures one variable,

					i, by value and another, j, by reference. It also has a parameter k0and

					another parameter l0that is received by reference. Running the example

					will result in the output shown in Figure 1-5.

					We can think of a lambda expression as an instance of a function

					object, but the compiler creates the class definition for us. For example, the

					lambda expression we used in the preceding example is analogous to an

					instance of a class as shown in Figure 1-6. Wherever we use a C++ lambda

					expression, we can substitute it with an instance of a function object like

					the one shown in Figure 1-6.

					20

					[bookmark: 46_0]
					[bookmark: 46_1]
				

			

		

		
			
				
					Chapter 1 IntroduCtIon

					Whenever we define a function object, we need to assign it a name

					(Functor in Figure 1-6). Lambdas expressed inline (as in Figure 1-4) are

					anonymous because they do not need a name.

					class Functor{

					public:

					Functor(int i, int &j) : my_i{i}, my_jRef{j} { }

					int operator()(int k0, int &l0) {

					my_jRef = 2 * my_jRef;

					k0 = 2 * k0;

					l0 = 2 * l0;

					return my_i + my_jRef + k0 + l0;

					}

					private:

					int my_i;

					int &my_jRef;

					};

					Figure 1-6. Function object instead of a lambda (more on this in

					Chapter 10)

					Portability and Direct Programming

					Portability is a key objective for SYCL and DPC++; however, neither can

					guarantee it. All a language and compiler can do is make portability a little

					easier for us to achieve in our applications when we want to do so.

					Portability is a complex topic and includes the concept of functional

					portability as well as performance portability. With functional portability,

					we expect our program to compile and run equivalently on a wide variety

					of platforms. With performance portability, we would like our program to

					get reasonable performance on a wide variety of platforms. While that is

					a pretty soft definition, the converse might be clearer—we do not want to

					write a program that runs superfast on one platform only to find that it is

					unreasonably slow on another. In fact, we’d prefer that it got the most out

					of any platform that it is run upon. Given the wide variety of devices in a

					heterogeneous system, performance portability requires non-trivial effort

					from us as programmers.

					21

					www. dbooks . or g

					[bookmark: 47_0]
					[bookmark: 47_1]
					[bookmark: 47_2]
				

			

		

		
			
				
					Chapter 1 IntroduCtIon

					Fortunately, SYCL defines a way to code that can improve performance

					portability. First of all, a generic kernel can run everywhere. In a limited

					number of cases, this may be enough. More commonly, several versions

					of important kernels may be written for different types of devices.

					Specifically, a kernel might have a generic GPU and a generic CPU version.

					Occasionally, we may want to specialize our kernels for a specific device

					such as a specific GPU. When that occurs, we can write multiple versions

					and specialize each for a different GPU model. Or we can parameterize

					one version to use attributes of a GPU to modify how our GPU kernel runs

					to adapt to the GPU that is present.

					While we are responsible for devising an effective plan for performance

					portability ourselves as programmers, SYCL defines constructs to allow

					us to implement a plan. As mentioned before, capabilities can be layered

					by starting with a kernel for all devices and then gradually introducing

					additional, more specialized kernel versions as needed. This sounds great,

					but the overall flow for a program can have a profound impact as well

					because data movement and overall algorithm choice matter. Knowing

					that gives insight into why no one should claim that SYCL (or other direct

					programming solution) solves performance portability. However, it is a

					tool in our toolkit to help us tackle these challenges.

					Concurrency vs. Parallelism

					The terms concurrent and parallel are not equivalent, although they

					are sometimes misconstrued as such. It is important to know that any

					programming consideration needed for concurrency is also important for

					parallelism.

					The term concurrent refers to code that can be advancing but not

					necessarily at the same instant. On our computers, if we have a Mail

					program open and a Web Browser, then they are running concurrently.

					Concurrency can happen on systems with only one processor, through a

					22

					[bookmark: 48_0]
					[bookmark: 48_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 1 IntroduCtIon

					process of time slicing (rapid switching back and forth between running

					each program).

					Tip any programming consideration needed for concurrency is also

					important for parallelism.

					The term parallel refers to code that can be advancing at the same

					instant. Parallelism requires systems that can actually do more than one

					thing at a time. A heterogeneous system can always do things in parallel,

					by its very nature of having at least two compute devices. Of course, a SYCL

					program does not require a heterogeneous system as it can run on a host-

					only system. Today, it is highly unlikely that any host system is not capable

					of parallel execution.

					Concurrent execution of code generally faces the same issues as

					parallel execution of code, because any particular code sequence cannot

					assume that it is the only code changing the world (data locations, I/O,

					etc.).

					Summary

					This chapter provided terminology needed for SYCL and DPC++ and

					provided refreshers on key aspects of parallel programming and C++ that

					are critical to SYCL and DPC++. Chapters 2, 3, and 4 expand on three keys

					to SYCL programming: devices need to be given work to do (send code to

					run on them), be provided with data (send data to use on them), and have

					a method of writing code (kernels).

					23

					www. dbooks . or g

					[bookmark: 49_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 1 IntroduCtIon

					Open Access This chapter is licensed under the terms

					of the Creative Commons Attribution 4.0 International

					License (http://creativecommons.org/licenses/by/4.0/), which permits

					use, sharing, adaptation, distribution and reproduction in any medium or

					format, as long as you give appropriate credit to the original author(s) and

					the source, provide a link to the Creative Commons license and indicate if

					changes were made.

					The images or other third party material in this chapter are included

					in the chapter’s Creative Commons license, unless indicated otherwise

					in a credit line to the material. If material is not included in the chapter’s

					Creative Commons license and your intended use is not permitted by

					statutory regulation or exceeds the permitted use, you will need to obtain

					permission directly from the copyright holder.

					24

				

			

		

		
			
				
					
				
			

			
				
					CHAPTER 2

					Where Code Executes

					Parallel programming is not really about driving in the fast lane. It is

					actually about driving fast in all the lanes. This chapter is all about

					enabling us to put our code everywhere that we can. We choose to enable

					all the compute resources in a heterogeneous system whenever it makes

					sense. Therefore, we need to know where those compute resources are

					hiding (find them) and put them to work (execute our code on them).

					We can control where our code executes—in other words, we can

					control which devices are used for which kernels. SYCL provides a

					framework for heterogeneous programming in which code can execute on

					a mixture of a host CPU and devices. The mechanisms which determine

					where code executes are important for us to understand and use.

					This chapter describes where code can execute, when it will execute,

					and the mechanisms used to control the locations of execution. Chapter 3

					will describe how to manage data so it arrives where we are executing our

					code, and then Chapter 4 returns to the code itself and discusses the writing

					of kernels.

					© Intel Corporation 2021

					J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-5574-2_2

					25

					www. dbooks . or g

					[bookmark: 51_0]
					[bookmark: 51_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 2 Where Code exeCutes

					Single-Source

					SYCL programs can be single-source, meaning that the same translation

					unit (typically a source file and its headers) contains both the code that

					defines the compute kernels to be executed on SYCL devices and also the

					host code that orchestrates execution of those kernels. Figure 2-1 shows

					these two code paths graphically, and Figure 2-2 provides an example

					application with the host and device code regions marked.

					Combining both device and host code into a single-source file

					(or translation unit) can make it easier to understand and maintain a

					heterogeneous application. The combination also provides improved

					language type safety and can lead to more compiler optimizations of

					our code.

					Figure 2-1. Single-source code contains both host code (runs on

					CPU) and device code (runs on SYCL devices)

					26

					[bookmark: 52_0]
					[bookmark: 52_1]
					[bookmark: 52_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 2 Where Code exeCutes

					#include <CL/sycl.hpp>

					#include <array>

					#include <iostream>

					using namespace sycl;

					int main() {

					constexpr int size=16;

					std::array<int, size> data;

					// Create queue on implementation-chosen default device

					queue Q;

					// Create buffer using host allocated "data" array

					buffer B { data };

					Q.submit([&](handler& h) {

					accessor A{B, h};

					h.parallel_for(size , [=](auto& idx) {

					A[idx] = idx;

					});

					});

					// Obtain access to buffer on the host

					// Will wait for device kernel to execute to generate data

					host_accessor A{B};

					for (int i = 0; i < size; i++)

					std::cout << "data[" << i << "] = " << A[i] << "\n";

					return 0;

					}

					Figure 2-2. Simple SYCL program

					Host Code

					Applications contain C++ host code, which is executed by the CPU(s) on

					which the operating system has launched the application. Host code is the

					backbone of an application that defines and controls assignment of work

					to available devices. It is also the interface through which we define the

					data and dependences that should be managed by the runtime.

					Host code is standard C++ augmented with SYCL-specific constructs

					and classes that are designed to be implementable as a C++ library. This

					makes it easier to reason about what is allowed in host code (anything that

					is allowed in C++) and can simplify integration with build systems.

					27

					www. dbooks . or g

					[bookmark: 53_0]
					[bookmark: 53_1]
					[bookmark: 53_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 2 Where Code exeCutes

					sYCL applications are standard C++ augmented with constructs that

					can be implemented as a C++ library.

					a sYCL compiler may provide higher performance for a program by

					“understanding” these constructs.

					The host code in an application orchestrates data movement and

					compute offload to devices, but can also perform compute-intensive work

					itself and can use libraries like any C++ application.

					Device Code

					Devices correspond to accelerators or processors that are conceptually

					independent from the CPU that is executing host code. An implementation

					must expose the host processor also as a device, as described later in

					this chapter, but the host processor and devices should be thought of as

					logically independent from each other. The host processor runs native C++

					code, while devices run device code.

					Queues are the mechanism through which work is submitted to a

					device for future execution. There are three important properties of device

					code to understand:

					1. It executes asynchronously from the host code.

					The host program submits device code to a device,

					and the runtime tracks and starts that work only

					when all dependences for execution are satisfied

					(more on this in Chapter 3). The host program

					execution carries on before the submitted work

					is started on a device, providing the property that

					execution on devices is asynchronous to host

					program execution, unless we explicitly tie the two

					together.

					28

					[bookmark: 54_0]
					[bookmark: 54_1]
				

			

		

		
			
				
					Chapter 2 Where Code exeCutes

					2. There are restrictions on device code to make it

					possible to compile and achieve performance on

					accelerator devices. For example, dynamic memory

					allocation and runtime type information (RTTI)

					are not supported within device code, because

					they would lead to performance degradation on

					many accelerators. The small set of device code

					restrictions is covered in detail in Chapter 10.

					3. Some functions and queries defined by SYCL are

					available only within device code, because they

					only make sense there, for example, work-item

					identifier queries that allow an executing instance of

					device code to query its position in a larger data-

					parallel range (described in Chapter 4).

					In general, we will refer to work including device code that is

					submitted to the queue as actions. In Chapter 3, we will learn that actions

					include more than device code to execute; actions also include memory

					movement commands. In this chapter, since we are concerned with the

					device code aspect of actions, we will be specific in mentioning device

					code much of the time.

					Choosing Devices

					To explore the mechanisms that let us control where device code will

					execute, we’ll look at five use cases:

					Method#1: Running device code somewhere, when we

					don’t care which device is used. This is often

					the first step in development because it is the

					simplest.

					29

					www. dbooks . or g

					[bookmark: 55_0]
					[bookmark: 55_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 2 Where Code exeCutes

					Method#2: Explicitly running device code on the host

					device, which is often used for debugging. The

					host device is guaranteed to be always available

					on any system.

					Method#3: Dispatching device code to a GPU or another

					accelerator.

					Method#4: Dispatching device code to a heterogeneous

					set of devices, such as a GPU and an FPGA.

					Method#5: Selecting specific devices from a more general

					class of devices, such as a specific type of

					FPGA from a collection of available FPGA

					types.

					developers will typically debug their code as much as possible with

					Method#2 and only move to Methods #3–#5 when code has been

					tested as much as is practical with Method#2.

					Method#1: Run on a Device of Any Type

					When we don’t care where our device code will run, it is easy to let the

					runtime pick for us. This automatic selection is designed to make it easy to

					start writing and running code, when we don’t yet care about what device

					is chosen. This device selection does not take into account the code to be

					run, so should be considered an arbitrary choice which likely won’t be

					optimal.

					Before talking about choice of a device, even one that the

					implementation has selected for us, we should first cover the mechanism

					through which a program interacts with a device: the queue.

					30

					[bookmark: 56_0]
				

			

		

		
			
				
					Chapter 2 Where Code exeCutes

					Queues

					A queueis an abstraction to which actions are submitted for execution

					on a single device. A simplified definition of the queueclass is given

					in Figures 2-3 and 2-4. Actions are usually the launch of data-parallel

					compute, although other commands are also available such as manual

					control of data motion for when we want more control than the automatic

					movement provided by the runtime. Work submitted to a queuecan

					execute after prerequisites tracked by the runtime are met, such as

					availability of input data. These prerequisites are covered in Chapters 3

					and 8.

					class queue {

					public:

					// Create a queue associated with the default device

					queue(const property_list = {});

					queue(const async_handler&,

					const property_list = {});

					// Create a queue associated with an explicit device

					// A device selector may be used in place of a device

					queue(const device&, const property_list = {});

					queue(const device&, const async_handler&,

					const property_list = {});

					// Create a queue associated with a device in a specific context

					// A device selector may be used in place of a device

					queue(const context&, const device&,

					const property_list = {});

					queue(const context&, const device&,

					const async_handler&,

					const property_list = {});

					};

					Figure 2-3. Simplified definition of the constructors of the queue class

					31

					www. dbooks . or g

					[bookmark: 57_0]
					[bookmark: 57_1]
					[bookmark: 57_2]
				

			

		

		
			
				
					Chapter 2 Where Code exeCutes

					class queue {

					public:

					// Submit a command group to this queue.

					// The command group may be a lambda or functor object.

					// Returns an event representation the action

					// performed in the command group.

					template <typename T>

					event submit(T);

					// Wait for all previously submitted actions to finish executing.

					void wait();

					// Wait for all previously submitted actions to finish executing.

					// Pass asynchronous exceptions to an async_handler if one was provided.

					void wait_and_throw();

					};

					Figure 2-4. Simplified definition of key member functions in the

					queue class

					A queueis bound to a single device, and that binding occurs on

					construction of the queue. It is important to understand that work

					submitted to a queue is executed on the single device to which that queue

					is bound. Queues cannot be mapped to collections of devices because that

					would create ambiguity on which device should perform work. Similarly,

					a queue cannot spread the work submitted to it across multiple devices.

					Instead, there is an unambiguous mapping between a queue and the

					device on which work submitted to that queue will execute, as shown in

					Figure 2-5.

					32

					[bookmark: 58_0]
					[bookmark: 58_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 2 Where Code exeCutes

					Figure 2-5. A queue is bound to a single device. Work submitted to

					the queue executes on that device

					Multiple queues may be created in a program, in any way that we

					desire for application architecture or programming style. For example,

					multiple queues may be created to each bind with a different device or to

					be used by different threads in a host program. Multiple different queues

					can be bound to a single device, such as a GPU, and submissions to those

					different queues will result in the combined work being performed on

					the device. An example of this is shown in Figure 2-6. Conversely, as we

					mentioned previously, a queue cannot be bound to more than one device

					because there must not be any ambiguity on where an action is being

					requested to execute. If we want a queue that will load balance work across

					multiple devices, for example, then we can create that abstraction in our

					code.

					33

					www. dbooks . or g

					[bookmark: 59_0]
					[bookmark: 59_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 2 Where Code exeCutes

					Figure 2-6. Multiple queues can be bound to a single device

					Because a queue is bound to a specific device, queue construction

					is the most common way in code to choose the device on which actions

					submitted to the queue will execute. Selection of the device when

					constructing a queue is achieved through a device selector abstraction and

					associated device_selectorclass.

					Binding a Queue to a Device, When Any Device

					Will Do

					Figure 2-7 is an example where the device that a queue should bind to

					is not specified. The trivial queue constructor that does not take any

					arguments (as in Figure 2-7) simply chooses some available device

					behind the scenes. SYCL guarantees that at least one device will always

					be available—namely, the host device. The host device can run kernel

					code and is an abstraction of the processor on which the host program is

					executing so is always present.

					34

					[bookmark: 60_0]
					[bookmark: 60_1]
					[bookmark: 60_2]
				

			

		

		
			
				
					Chapter 2 Where Code exeCutes

					#include <CL/sycl.hpp>

					#include <iostream>

					using namespace sycl;

					int main() {

					// Create queue on whatever default device that the implementation

					// chooses. Implicit use of the default_selector.

					queue Q;

					std::cout << "Selected device: " <<

					Q.get_device().get_info<info::device::name>() << "\n";

					return 0;

					}

					Possible Output:

					Device: SYCL host device

					Figure 2-7. Implicit default device selector through trivial

					construction of a queue

					Using the trivial queue constructor is a simple way to begin application

					development and to get device code up and running. More control over

					selection of the device bound to a queue can be added as it becomes

					relevant for our application.

					Method#2: Using the Host Device

					for Development and Debugging

					The host device can be thought of as enabling the host CPU to act as if it

					was an independent device, allowing our device code to execute regardless

					of the accelerators available in a system. We always have some processor

					running the host program, so the host device is therefore always available

					to our application. The host device provides a guarantee that device code

					can always be run (no dependence on accelerator hardware) and has a few

					primary uses:

					35

					www. dbooks . or g

					[bookmark: 61_0]
					[bookmark: 61_1]
					[bookmark: 61_2]
				

			

		

		
			
				
					Chapter 2 Where Code exeCutes

					1. Development of device code on less capable

					systems that don’t have any accelerators: One

					common use is development and testing of device

					code on a local system, before deploying to an HPC

					cluster for performance testing and optimization.

					2. Debugging of device code with non-accelerator

					tooling: Accelerators are often exposed through

					lower-level APIs that may not have debug tooling

					as advanced as is available for host CPUs. With this

					in mind, the host device is expected to support

					debugging using standard tools familiar to CPU

					developers.

					3. Backup if no other devices are available, to

					guarantee that device code can be executed

					functionally: The host device implementation may

					not have performance as a primary goal, so should

					be considered as a functional backup to ensure that

					device code can always execute in any application,

					but not necessarily a path to performance.

					The host device is functionally like a hardware accelerator device in

					that a queue can bind to it and it can execute device code. Figure 2-8 shows

					how the host device is a peer to other accelerators that might be available

					in a system. It can execute device code, just like a CPU, GPU, or FPGA, and

					can have one or more queues constructed that bind to it.

					36

				

			

		

		
			
				
					
				
			

			
				
					Chapter 2 Where Code exeCutes

					Figure 2-8. The host device, which is always available, can execute

					device code like any accelerator

					An application can choose to create a queue that is bound to the host

					device by explicitly passing host_selectorto a queue constructor, as

					shown in Figure 2-9.

					#include <CL/sycl.hpp>

					#include <iostream>

					using namespace sycl;

					int main() {

					// Create queue to use the host device explicitly

					queue Q{ host_selector{} };

					std::cout << "Selected device: " <<

					Q.get_device().get_info<info::device::name>() << "\n";

					std::cout << " -> Device vendor: " <<

					Q.get_device().get_info<info::device::vendor>() << "\n";

					return 0;

					}

					Possible Output:

					Device: SYCL host device

					Figure 2-9. Selecting the host device using the host_selector class

					37

					www. dbooks . or g

					[bookmark: 63_0]
					[bookmark: 63_1]
				

			

		

		
			
				
					Chapter 2 Where Code exeCutes

					Even when not specifically requested (e.g., using host_selector), the

					host device might happen to be chosen by the default selector as occurred

					in the output in Figure 2-7.

					A few variants of device selector classes are defined to make it easy for

					us to target a type of device. The host_selectoris one example of these

					selector classes, and we’ll get into others in the coming sections.

					Method#3: Using a GPU (or Other

					Accelerators)

					GPUs are showcased in the next example, but any type of accelerator

					applies equally. To make it easy to target common classes of accelerators,

					devices are grouped into several broad categories, and SYCL provides

					built-in selector classes for them. To choose from a broad category of

					device type such as “any GPU available in the system,” the corresponding

					code is very brief, as described in this section.

					Device Types

					There are two main categories of devices to which a queue can be bound:

					1. The host device, which has already been described.

					2. Accelerator devices such as a GPU, an FPGA, or a

					CPU device, which are used to accelerate workloads

					in our applications.

					Accelerator Devices

					There are a few broad groups of accelerator types:

					1. CPU devices

					2. GPU devices

					38

					[bookmark: 64_0]
					[bookmark: 64_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 2 Where Code exeCutes

					3. Accelerators, which capture devices that don’t

					identify as either a CPU device or a GPU device. This

					includes FPGA and DSP devices.

					A device from any of these categories is easy to bind to a queue using

					built-in selector classes, which can be passed to queue (and some other

					class) constructors.

					Device Selectors

					Classes that must be bound to a specific device, such as the queueclass,

					have constructors that can accept a class derived from device_selector.

					For example, the queue constructor is

					queue(const device_selector &deviceSelector,

					const property_list &propList = {});

					There are five built-in selectors for the broad classes of common devices:

					default_selector

					host_selector

					cpu_selector

					any device of the implementation’s choosing.

					select the host device (always available).

					select a device that identifies itself as a Cpu in

					device queries.

					gpu_selector

					select a device that identifies itself as a Gpu in

					device queries.

					accelerator_selector select a device that identifies itself as an

					“accelerator,” which includes FpGas.

					One additional selector included in DPC++ (not available in SYCL) is

					available by including the header "CL/sycl/intel/fpga_extensions.hpp":

					INTEL::fpga_selector select a device that identifies itself as an FpGa.

					39

					www. dbooks . or g

					[bookmark: 65_0]
					[bookmark: 65_1]
				

			

		

		
			
				
					Chapter 2 Where Code exeCutes

					A queue can be constructed using one of the built-in selectors, such as

					queue myQueue{ cpu_selector{} };

					Figure 2-10 shows a complete example using the cpu_selector, and

					Figure 2-11 shows the corresponding binding of a queue with an available

					CPU device.

					Figure 2-12 shows an example using a variety of built-in selector

					classes and also demonstrates use of device selectors with another class

					(device) that accepts a device_selectoron construction.

					#include <CL/sycl.hpp>

					#include <iostream>

					using namespace sycl;

					int main() {

					// Create queue to use the CPU device explicitly

					queue Q{ cpu_selector{} };

					std::cout << "Selected device: " <<

					Q.get_device().get_info<info::device::name>() << "\n";

					std::cout << " -> Device vendor: " <<

					Q.get_device().get_info<info::device::vendor>() << "\n";

					return 0;

					}

					Possible Output:

					Selected device: Intel(R) Core(TM) i5-7400 CPU @ 3.00GHz

					-> Device vendor: Intel(R) Corporation

					Figure 2-10. CPU device selector example

					40

					[bookmark: 66_0]
					[bookmark: 66_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 2 Where Code exeCutes

					Figure 2-11. Queue bound to a CPU device available to the

					application

					41

					www. dbooks . or g

					[bookmark: 67_0]
				

			

		

		
			
				
					Chapter 2 Where Code exeCutes

					#include <CL/sycl.hpp>

					#include <CL/sycl/INTEL/fpga_extensions.hpp> // For fpga_selector

					#include <iostream>

					#include <string>

					using namespace sycl;

					void output_dev_info(const device& dev,

					const std::string& selector_name) {

					std::cout << selector_name << ": Selected device: " <<

					dev.get_info<info::device::name>() << "\n";

					std::cout << "

					-> Device vendor: " <<

					dev.get_info<info::device::vendor>() << "\n";

					}

					int main() {

					output_dev_info(device{ default_selector{}},

					"default_selector");

					output_dev_info(device{ host_selector{}},

					"host_selector");

					output_dev_info(device{ cpu_selector{}},

					"cpu_selector");

					output_dev_info(device{ gpu_selector{}},

					"gpu_selector");

					output_dev_info(device{ accelerator_selector{}},

					"accelerator_selector");

					output_dev_info(device{ INTEL::fpga_selector{}},

					"fpga_selector");

					return 0;

					}

					Possible Output:

					default_selector: Selected device: Intel(R) Gen9 HD Graphics NEO

					-> Device vendor: Intel(R) Corporation

					host_selector: Selected device: SYCL host device

					-> Device vendor:

					cpu_selector: Selected device: Intel(R) Core(TM) i5-7400 CPU @ 3.00GHz

					-> Device vendor: Intel(R) Corporation

					gpu_selector: Selected device: Intel(R) Gen9 HD Graphics NEO

					-> Device vendor: Intel(R) Corporation

					accelerator_selector: Selected device: Intel(R) FPGA Emulation Device

					-> Device vendor: Intel(R) Corporation

					fpga_selector: Selected device: pac_a10 : PAC Arria 10 Platform

					-> Device vendor: Intel Corp

					Figure 2-12. Example device identification output from various

					classes of device selectors and demonstration that device selectors

					can be used for construction of more than just a queue (in this case,

					construction of a device class instance)

					42

					[bookmark: 68_0]
				

			

		

		
			
				
					Chapter 2 Where Code exeCutes

					When Device Selection Fails

					If a gpu_selectoris used when creating an object such as a queue and if

					there are no GPU devices available to the runtime, then the selector throws

					a runtime_errorexception. This is true for all device selector classes in

					that if no device of the required class is available, then a runtime_error

					exception is thrown. It is reasonable for complex applications to catch that

					error and instead acquire a less desirable (for the application/algorithm)

					device class as an alternative. Exceptions and error handling are discussed

					in more detail in Chapter 5.

					Method#4: Using Multiple Devices

					As shown in Figures 2-5 and 2-6, we can construct multiple queues in an

					application. We can bind these queues to a single device (the sum of work

					to the queues is funneled into the single device), to multiple devices, or to

					some combination of these. Figure 2-13 provides an example that creates

					one queue bound to a GPU and another queue bound to an FPGA. The

					corresponding mapping is shown graphically in Figure 2-14.

					43

					www. dbooks . or g

					[bookmark: 69_0]
					[bookmark: 69_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 2 Where Code exeCutes

					#include <CL/sycl.hpp>

					#include <CL/sycl/INTEL/fpga_extensions.hpp> // For fpga_selector

					#include <iostream>

					using namespace sycl;

					int main() {

					queue my_gpu_queue(gpu_selector{});

					queue my_fpga_queue(INTEL::fpga_selector{});

					std::cout << "Selected device 1: " <<

					my_gpu_queue.get_device().get_info<info::device::name>() << "\n";

					std::cout << "Selected device 2: " <<

					my_fpga_queue.get_device().get_info<info::device::name>() << "\n";

					return 0;

					}

					Possible Output:

					Selected device 1: Intel(R) Gen9 HD Graphics NEO

					Selected device 2: pac_a10 : PAC Arria 10 Platform

					Figure 2-13. Creating queues to both GPU and FPGA devices

					Figure 2-14. GPU + FPGA device selector example: One queue is

					bound to a GPU and another to an FPGA

					44

					[bookmark: 70_0]
					[bookmark: 70_1]
				

			

		

		
			
				
					Chapter 2 Where Code exeCutes

					Method#5: Custom (Very Specific) Device

					Selection

					We will now look at how to write a custom selector. In addition to examples in

					this chapter, there are a few more examples shown in Chapter 12. The built-in

					device selectors are intended to let us get code up and running quickly. Real

					applications usually require specialized selection of a device, such as picking

					a desired GPU from a set of GPU types available in a system. The device

					selection mechanism is easily extended to arbitrarily complex logic, so we can

					write whatever code is required to choose the device that we prefer.

					device_selector Base Class

					All device selectors derive from the abstract device_selectorbase class

					and define the function call operator in the derived class:

					virtual int operator()(const device &dev) const {

					; /* User logic */

					}

					Defining this operator in a class that derives from device_selector

					is all that is required to define any complexity of selection logic, once we

					know three things:

					1. The function call operator is automatically called once

					for each device that the runtime finds as accessible to

					the application, including the host device.

					2. The operator returns an integer score each time that

					it is invoked. The highest score across all available

					devices is the device that the selector chooses.

					3. A negative integer returned by the function call

					operator means that the device being considered

					must not be chosen.

					45

					www. dbooks . or g

					[bookmark: 71_0]
					[bookmark: 71_1]
					[bookmark: 71_2]
				

			

		

		
			
				
					Chapter 2 Where Code exeCutes

					Mechanisms to Score a Device

					We have many options to create an integer score corresponding to a

					specific device, such as the following:

					1. Return a positive value for a specific device class.

					2. String match on a device name and/or device

					vendor strings.

					3. Anything we can imagine in code leading to an

					integer value, based on device or platform queries.

					For example, one possible approach to select an Intel Arria family

					FPGA device is shown in Figure 2-15.

					class my_selector : public device_selector {

					public:

					int operator()(const device &dev) const override {

					if (

					dev.get_info<info::device::name>().find("Arria")

					!= std::string::npos &&

					dev.get_info<info::device::vendor>().find("Intel")

					!= std::string::npos) {

					return 1;

					}

					return -1;

					}

					};

					Figure 2-15. Custom selector for Intel Arria FPGA device

					Chapter 12 has more discussion and examples for device selection

					(Figures 12-2 and 12-3) and discusses the get_infomethod in more depth.

					Three Paths to Device Code Execution on CPU

					A potential source of confusion comes from the multiple mechanisms

					through which a CPU can have code executed on it, as summarized in

					Figure 2-16.

					46

					[bookmark: 72_0]
					[bookmark: 72_1]
					[bookmark: 72_2]
					[bookmark: 72_3]
					[bookmark: 72_4]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 2 Where Code exeCutes

					The first and most obvious path to CPU execution is host code, which

					is either part of the single-source application (host code regions) or linked

					to and called from the host code such as a library function.

					The other two available paths execute device code. The first CPU path

					for device code is through the host device, which was described earlier in

					this chapter. It is always available and is expected to execute the device

					code on the same CPU(s) that the host code is executing on.

					A second path to execution of device code on a CPU is optional in

					SYCL and is a CPU accelerator device that is optimized for performance.

					This device is often implemented by a lower-level runtime such as

					OpenCL, so its availability can depend on drivers and other runtimes

					installed on the system. This philosophy is described by SYCL where the

					host device is intended to be debuggable with native CPU tools, while

					CPU devices may be built on implementations optimized for performance

					where native CPU debuggers are not available.

					Figure 2-16. SYCL mechanisms to execute on a CPU

					47

					www. dbooks . or g

					[bookmark: 73_0]
					[bookmark: 73_1]
				

			

		

		
			
				
					Chapter 2 Where Code exeCutes

					Although we don’t cover it in this book, there is a mechanism to

					enqueue regular CPU code (top part of Figure 2-16) when prerequisites in

					the task graph are satisfied. This advanced feature can be used to execute

					regular CPU code alongside device code in the task graph and is known as

					a host task.

					Creating Work on a Device

					Applications usually contain a combination of both host code and device

					code. There are a few class members that allow us to submit device code

					for execution, and because these work dispatch constructs are the only

					way to submit device code, they allow us to easily distinguish device code

					from host code.

					The remainder of this chapter introduces some of the work dispatch

					constructs, with the goal to help us understand and identify the division

					between device code and host code that executes natively on the host

					processor.

					Introducing the Task Graph

					A fundamental concept in the SYCL execution model is a graph of nodes.

					Each node (unit of work) in this graph contains an action to be performed

					on a device, with the most common action being a data-parallel device

					kernel invocation. Figure 2-17 shows an example graph with four nodes,

					where each node can be thought of as a device kernel invocation.

					The nodes in Figure 2-17 have dependence edges defining when it is

					legal for a node’s work to begin execution. The dependence edges are most

					commonly generated automatically from data dependences, although there

					are ways for us to manually add additional custom dependences when we

					want to. Node B in the graph, for example, has a dependence edge from

					node A. This edge means that node A must complete execution, and most

					48

					[bookmark: 74_0]
					[bookmark: 74_1]
					[bookmark: 74_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 2 Where Code exeCutes

					likely (depending on specifics of the dependence) make generated data

					available on the device where node B will execute, before node B’s action

					is started. The runtime controls resolution of dependences and triggering

					of node executions completely asynchronously from the host program’s

					execution. The graph of nodes defining an application will be referred to in

					this book as the task graph and is covered in more detail in Chapter 3.

					�

					�¨³¨±§¨±¦¨¶

					�¨©¬±¨ꢁº«¨±ꢁ¤±ꢁ¤¦·¬²±

					¦¤±ꢁ¥¨ꢁ¬±¬·¬¤·¨§ꢁc¨ꢀªꢀꢁ

					§¤·¤ꢁ§¨³¨±§¨±¦¨d

					�¦·¬²±¶

					�

					c¨ꢀªꢀꢁ§¤·¤ꢁ³¤µ¤¯¯¨¯

					§¨¹¬¦¨ꢁ®¨µ±¨¯

					¬±¹²¦¤·¬²±d

					�

					�

					Figure 2-17. The task graph defines actions to perform

					(asynchronously from the host program) on one or more devices and

					also dependences that determine when an action is safe to execute

					Q.submit([&](handler& h) {

					accessor acc{B, h};

					h.parallel_for(size , [=](auto& idx) {

					acc[idx] = idx;

					});

					});

					Figure 2-18. Submission of device code

					49

					www. dbooks . or g

					[bookmark: 75_0]
					[bookmark: 75_1]
				

			

		

		
			
				
					Chapter 2 Where Code exeCutes

					Where Is the Device Code?

					There are multiple mechanisms that can be used to define code that will

					be executed on a device, but a simple example shows how to identify such

					code. Even if the pattern in the example appears complex at first glance,

					the pattern remains the same across all device code definitions so quickly

					becomes second nature.

					The code passed as the final argument to the parallel_for, defined as

					a lambda in Figure 2-18, is the device code to be executed on a device. The

					parallel_forin this case is the construct that lets us distinguish device

					code from host code. parallel_foris one of a small set of device dispatch

					mechanisms, all members of the handlerclass, that define the code to be

					executed on a device. A simplified definition of the handlerclass is given

					in Figure 2-19.

					50

					[bookmark: 76_0]
					[bookmark: 76_1]
				

			

		

		
			
				
					Chapter 2 Where Code exeCutes

					class handler {

					public:

					// Specify event(s) that must be complete before the action

					// defined in this command group executes.

					void depends_on(std::vector<event>& events);

					// Guarantee that the memory object accessed by the accessor

					// is updated on the host after this action executes.

					template <typename AccessorT>

					void update_host(AccessorT acc);

					// Submit a memset operation writing to the specified pointer.

					// Return an event representing this operation.

					event memset(void *ptr, int value, size_t count);

					// Submit a memcpy operation copying from src to dest.

					// Return an event representing this operation.

					event memcpy(void *dest, const void *src, size_t count);

					// Copy to/from an accessor and host memory.

					// Accessors are required to have appropriate correct permissions.

					// Pointer can be a raw pointer or shared_ptr.

					template <typename SrcAccessorT, typename DestPointerT>

					void copy(SrcAccessorT src, DestPointerT dest);

					template <typename SrcPointerT, typename DestAccessorT>

					void copy(SrcPointerT src, DestAccessorT dest);

					// Copy between accessors.

					// Accessors are required to have appropriate correct permissions.

					template <typename SrcAccessorT, typename DestAccessorT>

					void copy(SrcAccessorT src, DestAccessorT dest);

					// Submit different forms of kernel for execution.

					template <typename KernelName, typename KernelType>

					void single_task(KernelType kernel);

					template <typename KernelName, typename KernelType, int Dims>

					void parallel_for(range<Dims> num_work_items,

					KernelType kernel);

					template <typename KernelName, typename KernelType, int Dims>

					void parallel_for(nd_range<Dims> execution_range,

					KernelType kernel);

					template <typename KernelName, typename KernelType, int Dims>

					void parallel_for_work_group(range<Dims> num_groups,

					KernelType kernel);

					template <typename KernelName, typename KernelType, int Dims>

					void parallel_for_work_group(range<Dims> num_groups,

					range<Dims> group_size,

					KernelType kernel);

					};

					Figure 2-19. Simplified definition of member functions in the

					handler class

					51

					www. dbooks . or g

					[bookmark: 77_0]
				

			

		

		
			
				
					Chapter 2 Where Code exeCutes

					In addition to calling members of the handlerclass to submit device code,

					there are also members of the queueclass that allow work to be submitted. The

					queueclass members shown in Figure 2-20 are shortcuts that simplify certain

					patterns, and we will see these shortcuts used in future chapters.

					class queue {

					public:

					// Submit a memset operation writing to the specified pointer.

					// Return an event representing this operation.

					event memset(void *ptr, int value, size_t count)

					// Submit a memcpy operation copying from src to dest.

					// Return an event representing this operation.

					event memcpy(void *dest, const void *src, size_t count);

					// Submit different forms of kernel for execution.

					// Return an event representing the kernel operation.

					template <typename KernelName, typename KernelType>

					event single_task(KernelType kernel);

					template <typename KernelName, typename KernelType, int Dims>

					event parallel_for(range<Dims> num_work_items,

					KernelType kernel);

					template <typename KernelName, typename KernelType, int Dims>

					event parallel_for(nd_range<Dims> execution_range,

					KernelType kernel);

					// Submit different forms of kernel for execution.

					// Wait for the specified event(s) to complete

					// before executing the kernel.

					// Return an event representing the kernel operation.

					template <typename KernelName, typename KernelType>

					event single_task(const std::vector<event>& events,

					KernelType kernel);

					template <typename KernelName, typename KernelType, int Dims>

					event parallel_for(range<Dims> num_work_items,

					const std::vector<event>& events,

					KernelType kernel);

					template <typename KernelName, typename KernelType, int Dims>

					event parallel_for(nd_range<Dims> execution_range,

					const std::vector<event>& events,

					KernelType kernel);

					};

					Figure 2-20. Simplified definition of member functions in the queue

					class that act as shorthand notation for equivalent functions in the

					handler class

					52

					[bookmark: 78_0]
				

			

		

		
			
				
					Chapter 2 Where Code exeCutes

					Actions

					The code in Figure 2-18 contains a parallel_for, which defines work to

					be performed on a device. The parallel_foris within a command group

					(CG) submitted to a queue, and the queuedefines the device on which

					the work is to be performed. Within the command group, there are two

					categories of code:

					1. Exactly one call to an action that either queues

					device code for execution or performs a manual

					memory operation such as copy.

					2. Host code that sets up dependences defining when

					it is safe for the runtime to start execution of the

					work defined in (1), such as creation of accessors to

					buffers (described in Chapter 3).

					The handler class contains a small set of member functions that define

					the action to be performed when a task graph node is executed. Figure 2-21

					summarizes these actions.

					53

					www. dbooks . or g

					[bookmark: 79_0]
					[bookmark: 79_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 2 Where Code exeCutes

					single_task

					parallel_for

					parallel_for_work_group

					copy

					update_host

					fill

					Figure 2-21. Actions that invoke device code or perform explicit

					memory operations

					Only a single action from Figure 2-21 may be called within a command

					group (it is an error to call more than one), and only a single command

					group can be submitted to a queue per submitcall. The result of this

					is that a single operation from Figure 2-21 exists per task graph node,

					to be executed when the node dependences are met and the runtime

					determines that it is safe to execute.

					a command group must have exactly one action within it, such as a

					kernel launch or explicit memory operation.

					The idea that code is executed asynchronously in the future is the

					critical difference between code that runs on the CPU as part of the host

					program and device code that will run in the future when dependences

					54

					[bookmark: 80_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 2 Where Code exeCutes

					are satisfied. A command group usually contains code from each category,

					with the code that defines dependences running as part of the host

					program (so that the runtime knows what the dependences are) and

					device code running in the future once the dependences are satisfied.

					#include <CL/sycl.hpp>

					#include <array>

					#include <iostream>

					using namespace sycl;

					int main() {

					constexpr int size = 16;

					std::array<int, size> data;

					buffer B{ data };

					queue Q{}; // Select any device for this queue

					std::cout << "Selected device is: " <<

					Q.get_device().get_info<info::device::name>() << "\n";

					Q.submit([&](handler& h) {

					accessor acc{B, h};

					h.parallel_for(size , [=](auto&idx){

					acc[idx] = idx;

					});

					});

					return 0;

					}

					Figure 2-22. Submission of device code

					There are three classes of code in Figure 2-22:

					1. Host code: Drives the application, including

					creating and managing data buffers and submitting

					work to queues to form new nodes in the task graph

					for asynchronous execution.

					55

					www. dbooks . or g

					[bookmark: 81_0]
				

			

		

		
			
				
					Chapter 2 Where Code exeCutes

					2. Host code within a command group: This code is

					run on the processor that the host code is executing

					on and executes immediately, before the submitcall

					returns. This code sets up the node dependences by

					creating accessors, for example. Any arbitrary CPU

					code can execute here, but best practice is to restrict

					it to code that configures the node dependences.

					3. An action: Any action listed in Figure 2-21 can be

					included in a command group, and it defines the

					work to be performed asynchronously in the future

					when node requirements are met (set up by (2)).

					To understand when code in an application will run, note that

					anything passed to an action listed in Figure 2-21 that initiates device

					code execution, or an explicit memory operation listed in Figure 2-21, will

					execute asynchronously in the future when the DAG node dependences

					have been met. All other code runs as part of the host program

					immediately, as expected in typical C++ code.

					Fallback

					Usually a command group is executed on the command queue to which

					we have submitted it. However, there may be cases where the command

					group fails to be submitted to a queue (e.g., when the requested size of

					work is too large for the device’s limits) or when a successfully submitted

					operation is unable to begin execution (e.g., when a hardware device has

					failed). To handle such cases, it is possible to specify a fallback queue for

					the command group to be executed on. The authors don’t recommend this

					error management technique because it offers little control, and instead

					we recommend catching and managing the initial error as is described in

					Chapter 5. We briefly cover the fallback queue here because some people

					prefer the style and it is a well-known part of SYCL.

					56

					[bookmark: 82_0]
					[bookmark: 82_1]
				

			

		

		
			
				
					Chapter 2 Where Code exeCutes

					This style of fallback is for failed queue submissions for devices that

					are present on the machine. This is not a fallback mechanism to solve the

					problem of an accelerator not being present. On a system with no GPU device,

					the program in Figure 2-23 will throw an error at the Qdeclaration (attempted

					construction) indicating that “No device of requested type available.”

					The topic of fallback based on devices that are present will be

					discussed in Chapter 12.

					#include <CL/sycl.hpp>

					#include <array>

					#include <iostream>

					using namespace sycl;

					int main() {

					constexpr int global_size = 16;

					constexpr int local_size = 16;

					buffer<int,2> B{ range{ global_size, global_size }};

					queue gpu_Q{ gpu_selector{} };

					queue host_Q{ host_selector{} };

					nd_range NDR {

					range{ global_size, global_size },

					range{ local_size, local_size }};

					gpu_Q.submit([&](handler& h){

					accessor acc{B, h};

					h.parallel_for(NDR , [=](auto id) {

					auto ind = id.get_global_id();

					acc[ind] = ind[0] + ind[1];

					});

					}, host_Q); /** <<== Fallback Queue Specified **/

					host_accessor acc{B};

					for(int i=0; i < global_size; i++){

					for(int j = 0; j < global_size; j++){

					if(acc[i][j] != i+j) {

					std::cout<<"Wrong result\n";

					return 1;

					} } }

					std::cout<<"Correct results\n";

					return 0;

					}

					Figure 2-23. Fallback queue example

					57

					www. dbooks . or g

					[bookmark: 83_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 2 Where Code exeCutes

					Figure 2-23 shows code that will fail to begin execution on some GPUs,

					due to the requested size of the work-group. We can specify a secondary

					queue as a parameter to the submit function, and this secondary queue

					(the host device in this case) is used if the command group fails to be

					enqueued to the primary queue.

					the fallback queue is enabled by passing a secondary queue to a

					submitcall. the authors recommend catching the initial error and

					handling it, as described in Chapter 5, instead of using the fallback

					queue mechanism which offers less control.

					Summary

					In this chapter we provided an overview of queues, selection of the

					device with which a queue will be associated, and how to create custom

					device selectors. We also overviewed the code that executes on a device

					asynchronously when dependences are met vs. the code that executes as

					part of the C++ application host code. Chapter 3 describes how to control

					data movement.

					58

					[bookmark: 84_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 2 Where Code exeCutes

					Open Access This chapter is licensed under the terms

					of the Creative Commons Attribution 4.0 International

					License (http://creativecommons.org/licenses/by/4.0/), which permits

					use, sharing, adaptation, distribution and reproduction in any medium or

					format, as long as you give appropriate credit to the original author(s) and

					the source, provide a link to the Creative Commons license and indicate if

					changes were made.

					The images or other third party material in this chapter are included

					in the chapter’s Creative Commons license, unless indicated otherwise

					in a credit line to the material. If material is not included in the chapter’s

					Creative Commons license and your intended use is not permitted by

					statutory regulation or exceeds the permitted use, you will need to obtain

					permission directly from the copyright holder.

					59

					www. dbooks . or g

				

			

		

		
			
				
					
				
			

			
				
					CHAPTER 3

					Data Management

					Supercomputer architects often lament that we need to “feed the beast.”

					The phrase “feed the beast” refers to the “beast” of a computer we create

					when we use lots of parallelism, and feeding data to it becomes a key

					challenge to solve.

					Feeding a Data Parallel C++ program on a heterogeneous machine

					requires some care to ensure data is where it needs to be when it needs to

					be there. In a large program, that can be a lot of work. In a preexisting C++

					program, it can be a nightmare just to sort out how to manage all the data

					movements needed.

					We will carefully explain the two ways to manage data: Unified Shared

					Memory (USM) and buffers. USM is pointer based, which is familiar to C++

					programmers. Buffers offer a higher-level abstraction. Choice is good.

					We need to control the movement of data, and this chapter covers

					options to do exactly that.

					© Intel Corporation 2021

					J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-5574-2_3

					61

					[bookmark: 86_0]
					[bookmark: 86_1]
				

			

		

		
			
				
					Chapter 3 Data ManageMent

					In Chapter 2, we studied how to control where code executes. Our

					code needs data as input and produces data as output. Since our code

					may run on multiple devices and those devices do not necessarily share

					memory, we need to manage data movement. Even when data is shared,

					such as with USM, synchronization and coherency are concepts we need

					to understand and manage.

					A logical question might be “Why doesn’t the compiler just do

					everything automatically for us?” While a great deal can be handled for

					us automatically, performance is usually suboptimal if we do not assert

					ourselves as programmers. In practice, for best performance, we will need

					to concern ourselves with code placement (Chapter 2) and data movement

					(this chapter) when writing heterogeneous programs.

					This chapter provides an overview of managing data, including

					controlling the ordering of data usage. It complements the prior chapter,

					which showed us how to control where code runs. This chapter helps us

					efficiently make our data appear where we have asked the code to run,

					which is important not only for correct execution of our application but

					also to minimize execution time and power consumption.

					Introduction

					Compute is nothing without data. The whole point of accelerating a

					computation is to produce an answer more quickly. This means that

					one of the most important aspects of data-parallel computations is how

					they access data, and introducing accelerator devices into a machine

					further complicates the picture. In traditional single-socket CPU-based

					systems, we have a single memory. Accelerator devices often have their

					own attached memories that cannot be directly accessed from the host.

					Consequently, parallel programming models that support discrete devices

					must provide mechanisms to manage these multiple memories and move

					data between them.

					62

					www. dbooks . or g

					[bookmark: 87_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 3 Data ManageMent

					In this chapter, we present an overview of the various mechanisms for

					data management. We introduce Unified Shared Memory and the buffer

					abstractions for data management and describe the relationship between

					kernel execution and data movement.

					The Data Management Problem

					Historically, one of the advantages of shared memory models for parallel

					programming is that they provide a single, shared view of memory. Having

					this single view of memory simplifies life. We are not required to do

					anything special to access memory from parallel tasks (aside from proper

					synchronization to avoid data races). While some types of accelerator

					devices (e.g., integrated GPUs) share memory with a host CPU, many

					discrete accelerators have their own local memories separate from that of

					the CPU as seen in Figure 3-1.

					Figure 3-1. Multiple discrete memories

					Device Local vs. Device Remote

					Programs running on a device perform better when reading and writing

					data using memory attached directly to the device rather than remote

					memories. We refer to accesses to a directly attached memory as local

					accesses. Accesses to another device’s memory are remote accesses.

					Remote accesses tend to be slower than local accesses because they must

					63

					[bookmark: 88_0]
					[bookmark: 88_1]
					[bookmark: 88_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 3 Data ManageMent

					travel over data links with lower bandwidth and/or higher latency. This

					means that it is often advantageous to co-locate both a computation and

					the data that it will use. To accomplish this, we must somehow ensure that

					data is copied or migrated between different memories in order to move it

					closer to where computation occurs.

					Figure 3-2. Data movement and kernel execution

					Managing Multiple Memories

					Managing multiple memories can be accomplished, broadly, in two ways:

					explicitly through our program or implicitly by the runtime. Each method

					has its advantages and drawbacks, and we may choose one or the other

					depending on circumstances or personal preference.

					Explicit Data Movement

					One option for managing multiple memories is to explicitly copy data

					between different memories. Figure 3-2 shows a system with a discrete

					accelerator where we must first copy any data that a kernel will require

					from the host memory to GPU memory. After the kernel computes results,

					we must copy these results back to the CPU before the host program can

					use that data.

					64

					www. dbooks . or g

					[bookmark: 89_0]
					[bookmark: 89_1]
					[bookmark: 89_2]
					[bookmark: 89_3]
				

			

		

		
			
				
					Chapter 3 Data ManageMent

					The primary advantage of explicit data movement is that we have full

					control over when data is transferred between different memories. This

					is important because overlapping computation with data transfer can be

					essential to obtain the best performance on some hardware.

					The drawback of explicit data movement is that specifying all data

					movements can be tedious and error prone. Transferring an incorrect

					amount of data or not ensuring that all data has been transferred before

					a kernel begins computing can lead to incorrect results. Getting all of the

					data movement correct from the beginning can be a very time-consuming

					task.

					Implicit Data Movement

					The alternative to program-controlled explicit data movements are

					implicit data movements controlled by a parallel runtime or driver. In this

					case, instead of requiring explicit copies between different memories, the

					parallel runtime is responsible for ensuring that data is transferred to the

					appropriate memory before it is used.

					The advantage of implicit data movement is that it requires less effort

					to get an application to take advantage of faster memory attached directly

					to the device. All the heavy lifting is done automatically by the runtime.

					This also reduces the opportunity to introduce errors into the program

					since the runtime will automatically identify both when data transfers

					must be performed and how much data must be transferred.

					The drawback of implicit data movement is that we have less or no

					control over the behavior of the runtime’s implicit mechanisms. The

					runtime will provide functional correctness but may not move data in an

					optimal fashion that ensures maximal overlap of computation with data

					transfer, and this could have a negative impact on program performance.

					65

					[bookmark: 90_0]
					[bookmark: 90_1]
				

			

		

		
			
				
					Chapter 3 Data ManageMent

					Selecting the Right Strategy

					Picking the best strategy for a program can depend on many different

					factors. Different strategies might be appropriate for different phases of

					program development. We could even decide that the best solution is to

					mix and match the explicit and implicit methods for different pieces of

					the program. We might choose to begin using implicit data movement

					to simplify porting an application to a new device. As we begin tuning

					the application for performance, we might start replacing implicit

					data movement with explicit in performance-critical parts of the code.

					Future chapters will cover how data transfers can be overlapped with

					computation in order to optimize performance.

					USM, Buffers, and Images

					There are three abstractions for managing memory: Unified Shared

					Memory (USM), buffers, and images. USM is a pointer-based approach

					that should be familiar to C/C++ programmers. One advantage of USM is

					easier integration with existing C++ code that operates on pointers. Buffers,

					as represented by the buffertemplate class, describe one-, two-, or three-

					dimensional arrays. They provide an abstract view of memory that can be

					accessed on either the host or a device. Buffers are not directly accessed

					by the program and are instead used through accessorobjects. Images

					act as a special type of buffer that provides extra functionality specific to

					image processing. This functionality includes support for special image

					formats, reading of images using sampler objects, and more. Buffers and

					images are powerful abstractions that solve many problems, but rewriting

					all interfaces in existing code to accept buffers or accessors can be time-

					consuming. Since the interface for buffers and images is largely the same,

					the rest of this chapter will only focus on USM and buffers.

					66

					www. dbooks . or g

					[bookmark: 91_0]
					[bookmark: 91_1]
					[bookmark: 91_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 3 Data ManageMent

					Unified Shared Memory

					USM is one tool available to us for data management. USM is a pointer-

					based approach that should be familiar to C and C++ programmers who

					use mallocor newto allocate data. USM simplifies life when porting existing

					C/C++ code that makes heavy use of pointers. Devices that support USM

					support a unified virtual address space. Having a unified virtual address

					space means that any pointer value returned by a USM allocation routine

					on the host will be a valid pointer value on the device. We do not have to

					manually translate a host pointer to obtain the “device version”—we see the

					same pointer value on both the host and device.

					A more detailed description of USM can be found in Chapter 6.

					Accessing Memory Through Pointers

					Since not all memories are created equal when a system contains both

					host memory and some number of device-attached local memories, USM

					defines three different types of allocations: device, host, and shared. All

					types of allocations are performed on the host. Figure 3-3 summarizes the

					characteristics of each allocation type.

					Figure 3-3. USM allocation types

					67

					[bookmark: 92_0]
					[bookmark: 92_1]
					[bookmark: 92_2]
					[bookmark: 92_3]
				

			

		

		
			
				
					Chapter 3 Data ManageMent

					A deviceallocation occurs in device attached memory. Such an

					allocation can be read from and written to on a device but is not directly

					accessible from the host. We must use explicit copy operations to move

					data between regular allocations in host memory and deviceallocations.

					A hostallocation occurs in host memory that is accessible both on the

					host and on a device. This means the same pointer value is valid both in

					host code and in device kernels. However, when such a pointer is accessed,

					the data always comes from host memory. If it is accessed on a device, the

					data does not migrate from the host to device-local memory. Instead, data

					is typically sent over a bus, such as PCI-Express (PCI-E), that connects the

					device to the host.

					A sharedallocation is accessible on both the host and the device. In

					this regard, it is very similar to a host allocation, but it differs in that data

					can now migrate between host memory and device-local memory. This

					means that accesses on a device, after the migration has occurred, happen

					from much faster device-local memory instead of remotely accessing

					host memory though a higher-latency connection. Typically, this is

					accomplished through mechanisms inside the runtime and lower-level

					drivers that are hidden from us.

					USM and Data Movement

					USM supports both explicit and implicit data movement strategies, and

					different allocation types map to different strategies. Device allocations

					require us to explicitly move data between host and device, while host and

					shared allocations provide implicit data movement.

					Explicit Data Movement in USM

					Explicit data movement with USM is accomplished with deviceallocations

					and a special memcpy()found in the queue and handler classes. We

					enqueue memcpy()operations (actions) to transfer data either from the

					host to the device or from the device to the host.

					68

					www. dbooks . or g

					[bookmark: 93_0]
					[bookmark: 93_1]
				

			

		

		
			
				
					Chapter 3 Data ManageMent

					Figure 3-4 contains one kernel that operates on a device allocation.

					Data is copied between hostArrayand deviceArraybefore and after the

					kernel executes using memcpy()operations. Calls to wait()on the queue

					ensure that the copy to the device has completed before the kernel executes

					and ensure that the kernel has completed before the data is copied back to

					the host. We will learn how we can eliminate these calls later in this chapter.

					#include <CL/sycl.hpp>

					#include<array>

					using namespace sycl;

					constexpr int N = 42;

					int main() {

					queue Q;

					std::array<int,N> host_array;

					int *device_array = malloc_device<int>(N, Q);

					for (int i = 0; i < N; i++)

					host_array[i] = N;

					// We will learn how to simplify this example later

					Q.submit([&](handler &h) {

					// copy hostArray to deviceArray

					h.memcpy(device_array, &host_array[0], N * sizeof(int));

					});

					Q.wait();

					Q.submit([&](handler &h) {

					h.parallel_for(N, [=](id<1> i) { device_array[i]++; });

					});

					Q.wait();

					Q.submit([&](handler &h) {

					// copy deviceArray back to hostArray

					h.memcpy(&host_array[0], device_array, N * sizeof(int));

					});

					Q.wait();

					free(device_array, Q);

					return 0;

					}

					Figure 3-4. USM explicit data movement

					69

					[bookmark: 94_0]
					[bookmark: 94_1]
				

			

		

		
			
				
					Chapter 3 Data ManageMent

					Implicit Data Movement in USM

					Implicit data movement with USM is accomplished with hostand shared

					allocations. With these types of allocations, we do not need to explicitly

					insert copy operations to move data between host and device. Instead,

					we simply access the pointers inside a kernel, and any required data

					movement is performed automatically without programmer intervention

					(as long as your device supports these allocations). This greatly simplifies

					porting of existing codes: simply replace any malloc or new with the

					appropriate USM allocation functions (as well as the calls to freeto

					deallocate memory), and everything should just work.

					#include <CL/sycl.hpp>

					using namespace sycl;

					constexpr int N = 42;

					int main() {

					queue Q;

					int *host_array = malloc_host<int>(N, Q);

					int *shared_array = malloc_shared<int>(N, Q);

					for (int i = 0; i < N; i++) {

					// Initialize hostArray on host

					host_array[i] = i;

					}

					// We will learn how to simplify this example later

					Q.submit([&](handler &h) {

					h.parallel_for(N, [=](id<1> i) {

					// access sharedArray and hostArray on device

					shared_array[i] = host_array[i] + 1;

					});

					});

					Q.wait();

					for (int i = 0; i < N; i++) {

					// access sharedArray on host

					host_array[i] = shared_array[i];

					}

					free(shared_array, Q);

					free(host_array, Q);

					return 0;

					}

					Figure 3-5. USM implicit data movement

					70

					www. dbooks . or g

					[bookmark: 95_0]
					[bookmark: 95_1]
				

			

		

		
			
				
					Chapter 3 Data ManageMent

					In Figure 3-5, we create two arrays, hostArrayand sharedArray,

					that are host and shared allocations, respectively. While both host

					and shared allocations are directly accessible in host code, we only

					initialize hostArrayhere. Similarly, it can be directly accessed inside the

					kernel, performing remote reads of the data. The runtime ensures that

					sharedArrayis available on the device before the kernel accesses it and

					that it is moved back when it is later read by the host code, all without

					programmer intervention.

					Buffers

					The other abstraction provided for data management is the buffer object.

					Buffers are a data abstraction that represent one or more objects of a given

					C++ type. Elements of a buffer object can be a scalar data type (such as an

					int, float, or double), a vector data type (Chapter 11), or a user-defined

					class or structure. Data structures in buffers must be C++ trivially copyable,

					which means that an object can be safely copied byte by byte where copy

					constructors do not need to be invoked.

					While a buffer itself is a single object, the C++ type encapsulated by the

					buffer could be an array that contains multiple objects. Buffers represent

					data objects rather than specific memory addresses, so they cannot be

					directly accessed like regular C++ arrays. Indeed, a buffer object might

					map to multiple different memory locations on several different devices,

					or even on the same device, for performance reasons. Instead, we use

					accessor objects to read and write to buffers.

					A more detailed description of buffers can be found in Chapter 7.

					71

					[bookmark: 96_0]
					[bookmark: 96_1]
				

			

		

		
			
				
					Chapter 3 Data ManageMent

					Creating Buffers

					Buffers can be created in a variety of ways. The simplest method is to

					simply construct a new buffer with a range that specifies the size of the

					buffer. However, creating a buffer in this fashion does not initialize its data,

					meaning that we must first initialize the buffer through other means before

					attempting to read useful data from it.

					Buffers can also be created from existing data on the host. This is done

					by invoking one of the several constructors that take either a pointer to

					an existing host allocation, a set of InputIterators, or a container that

					has certain properties. Data is copied during buffer construction from the

					existing host allocation into the buffer object’s host memory. A buffer may

					also be created from an existing cl_memobject if we are using the SYCL

					interoperability features with OpenCL.

					Accessing Buffers

					Buffers may not be directly accessed by the host and device (except

					through advanced and infrequently used mechanisms not described here).

					Instead, we must create accessors in order to read and write to buffers.

					Accessors provide the runtime with information about how we plan to use

					the data in buffers, allowing it to correctly schedule data movement.

					72

					www. dbooks . or g

					[bookmark: 97_0]
					[bookmark: 97_1]
					[bookmark: 97_2]
				

			

		

		
			
				
					Chapter 3 Data ManageMent

					#include <CL/sycl.hpp>

					#include <array>

					using namespace sycl;

					constexpr int N = 42;

					int main() {

					std::array<int,N> my_data;

					for (int i = 0; i < N; i++)

					my_data[i] = 0;

					{

					queue q;

					buffer my_buffer(my_data);

					q.submit([&](handler &h) {

					// create an accessor to update

					// the buffer on the device

					accessor my_accessor(my_buffer, h);

					h.parallel_for(N, [=](id<1> i) {

					my_accessor[i]++;

					});

					});

					// create host accessor

					host_accessor host_accessor(my_buffer);

					for (int i = 0; i < N; i++) {

					// access myBuffer on host

					std::cout << host_accessor[i] << " ";

					}

					std::cout << "\n";

					}

					// myData is updated when myBuffer is

					// destroyed upon exiting scope

					for (int i = 0; i < N; i++) {

					std::cout << my_data[i] << " ";

					}

					std::cout << "\n";

					}

					Figure 3-6. Buffers and accessors

					73

					[bookmark: 98_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 3 Data ManageMent

					Figure 3-7. Buffer access modes

					Access Modes

					When creating an accessor, we can inform the runtime how we are going to

					use it to provide more information for optimizations. We do this by specifying

					an access mode. Access modes are defined in the access::mode enum

					described in Figure 3-7. In the code example shown in Figure 3-6, the accessor

					myAccessoris created with the default access mode, access::mode::read_

					write. This lets the runtime know that we intend to both read and write to

					the buffer through myAccessor. Access modes are how the runtime is able to

					optimize implicit data movement. For example, access::mode::readtells the

					runtime that the data needs to be available on the device before this kernel

					can begin executing. If a kernel only reads data through an accessor, there is

					no need to copy data back to the host after the kernel has completed as we

					haven’t modified it. Likewise, access::mode::writelets the runtime know

					that we will modify the contents of a buffer and may need to copy the results

					back after computation has ended.

					Creating accessors with the proper modes gives the runtime more

					information about how we use data in our program. The runtime uses

					accessors to order the uses of data, but it can also use this data to optimize

					scheduling of kernels and data movement. The access modes and

					optimization tags are described in greater detail in Chapter 7.

					74

					www. dbooks . or g

					[bookmark: 99_0]
					[bookmark: 99_1]
					[bookmark: 99_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 3 Data ManageMent

					Ordering the Uses of Data

					Kernels can be viewed as asynchronous tasks that are submitted for

					execution. These tasks must be submitted to a queue where they are

					scheduled for execution on a device. In many cases, kernels must execute

					in a specific order so that the correct result is computed. If obtaining

					the correct result requires task Ato execute before task B, we say that a

					dependence1 exists between tasks Aand B.

					However, kernels are not the only form of task that must be scheduled.

					Any data that is accessed by a kernel needs to be available on the device

					before the kernel can start executing. These data dependences can create

					additional tasks in the form of data transfers from one device to another.

					Data transfer tasks may be either explicitly coded copy operations or more

					commonly implicit data movements performed by the runtime.

					If we take all the tasks in a program and the dependences that exist

					between them, we can use this to visualize the information as a graph. This

					task graph is specifically a directed acyclic graph (DAG) where the nodes

					are the tasks and the edges are the dependences. The graph is directed

					because dependences are one-way: task Amust happen before task B. The

					graph is acyclic because it does not contain any cycles or paths from a

					node that lead back to itself.

					In Figure 3-8, task Amust execute before tasks Band C. Likewise,

					Band Cmust execute before task D. Since Band Cdo not have a

					dependence between each other, the runtime is free to execute them

					1Note that you may see “dependence” and “dependences” sometimes spelled

					“dependency” and “dependencies” in other texts. They mean the same thing,

					but we are favoring the spelling used in several important papers on data flow

					analysis. See https://dl.acm.org/doi/pdf/10.1145/75277.75280and

					https://dl.acm.org/doi/pdf/10.1145/113446.113449.

					75

					[bookmark: 100_0]
					[bookmark: 100_1]
					[bookmark: 100_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 3 Data ManageMent

					in any order (or even in parallel) as long as task Ahas already executed.

					Therefore, the possible legal orderings of this graph are A⇒ B⇒ C⇒ D, A⇒

					C⇒ B⇒ D, and even A⇒ {B,C}⇒ Dif Band Ccan concurrently execute.

					Figure 3-8. Simple task graph

					Tasks may have a dependence with a subset of all tasks. In these cases,

					we only want to specify the dependences that matter for correctness. This

					flexibility gives the runtime latitude to optimize the execution order of the

					task graph. In Figure 3-9, we extend the earlier task graph from Figure 3-8

					to add tasks Eand Fwhere Emust execute before F. However, tasks Eand F

					have no dependences with nodes A, B, C, and D. This allows the runtime to

					choose from many possible legal orderings to execute all the tasks.

					Figure 3-9. Task graph with disjoint dependences

					76

					www. dbooks . or g

					[bookmark: 101_0]
					[bookmark: 101_1]
					[bookmark: 101_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 3 Data ManageMent

					There are two different ways to model the execution of tasks, such as

					a launch of a kernel, in a queue: the queue could either execute tasks in

					the order of submission, or it could execute tasks in any order subject to

					any dependences that we define. There are several mechanisms for us to

					define the dependences needed for correct ordering.

					In-order Queues

					The simplest option to order tasks is to submit them to an in-order queue

					object. An in-order queue executes tasks in the order in which they

					were submitted as seen in Figure 3-10. While the intuitive task ordering

					of in-order queues provides an advantage in simplicity, it provides

					a disadvantage in that the execution of tasks will serialize even if no

					dependences exist between independent tasks. In-order queues are

					useful when bringing up applications because they are simple, intuitive,

					deterministic on execution ordering, and suitable for many codes.

					#include <CL/sycl.hpp>

					using namespace sycl;

					constexpr int N = 4;

					int main() {

					queue Q{property::queue::in_order()};

					// Task A

					Q.submit([&](handler& h) {

					A

					B

					C

					h.parallel_for(N, [=](id<1> i) { /*...*/ });

					});

					// Task B

					Q.submit([&](handler& h) {

					h.parallel_for(N, [=](id<1> i) { /*...*/ });

					});

					// Task C

					Q.submit([&](handler& h) {

					h.parallel_for(N, [=](id<1> i) { /*...*/ });

					});

					return 0;

					}

					Figure 3-10. In-order queue usage

					77

					[bookmark: 102_0]
					[bookmark: 102_1]
					[bookmark: 102_2]
				

			

		

		
			
				
					Chapter 3 Data ManageMent

					Out-of-Order (OoO) Queues

					Since queueobjects are out-of-order queues (unless created with the in-

					orderqueue property), they must provide ways to order tasks submitted to

					them. Queues order tasks by letting us inform the runtime of dependences

					between them. These dependences can be specified, either explicitly or

					implicitly, using command groups.

					A command group is an object that specifies a task and its

					dependences. Command groups are typically written as C++ lambdas

					passed as an argument to the submit()method of a queue object. This

					lambda’s only parameter is a reference to a handlerobject. The handler

					object is used inside the command group to specify actions, create

					accessors, and specify dependences.

					Explicit Dependences with Events

					Explicit dependences between tasks look like the examples we have

					seen (Figure 3-8) where task A must execute before task B. Expressing

					dependences in this way focuses on explicit ordering based on the

					computations that occur rather than on the data accessed by the

					computations. Note that expressing dependences between computations

					is primarily relevant for codes that use USM since codes that use buffers

					express most dependences via accessors. In Figures 3-4 and 3-5, we simply

					tell the queue to wait for all previously submitted tasks to finish before we

					continue. Instead, we can express task dependences through event objects.

					When submitting a command group to a queue, the submit()method

					returns an event object. These events can then be used in two ways.

					First, we can synchronize through the host by explicitly calling the

					wait()method on an event. This forces the runtime to wait for the

					task that generated the event to finish executing before host program

					execution may continue. Explicitly waiting on events can be very

					useful for debugging an application, but wait()can overly constrain

					the asynchronous execution of tasks since it halts all execution on the

					78

					www. dbooks . or g

					[bookmark: 103_0]
					[bookmark: 103_1]
					[bookmark: 103_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 3 Data ManageMent

					host thread. Similarly, one could also call wait()on a queue object,

					which would block execution on the host until all enqueued tasks have

					completed. This can be a useful tool if we do not want to keep track of all

					the events returned by enqueued tasks.

					This brings us to the second way that events can be used. The handler

					class contains a method named depends_on(). This method accepts either a

					single event or a vector of events and informs the runtime that the command

					group being submitted requires the specified events to complete before

					the action within the command group may execute. Figure 3-11 shows an

					example of how depends_on()may be used to order tasks.

					#include <CL/sycl.hpp>

					using namespace sycl;

					constexpr int N = 4;

					int main() {

					queue Q;

					// Task A

					auto eA = Q.submit([&](handler &h) {

					h.parallel_for(N, [=](id<1> i) { /*...*/ });

					});

					eA.wait();

					// Task B

					auto eB = Q.submit([&](handler &h) {

					h.parallel_for(N, [=](id<1> i) { /*...*/ });

					});

					// Task C

					auto eC = Q.submit([&](handler &h) {

					h.depends_on(eB);

					h.parallel_for(N, [=](id<1> i) { /*...*/ });

					});

					// Task D

					auto eD = Q.submit([&](handler &h) {

					h.depends_on({eB, eC});

					h.parallel_for(N, [=](id<1> i) { /*...*/ });

					});

					return 0;

					}

					Figure 3-11. Using events and depends_on

					79

					[bookmark: 104_0]
					[bookmark: 104_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 3 Data ManageMent

					Implicit Dependences with Accessors

					Implicit dependences between tasks are created from data dependences.

					Data dependences between tasks take three forms, shown in Figure 3-12.

					Read-after-Write

					(RAW)

					Write-after-Read

					(WAR)

					Write-after-

					Write(WAW)

					Figure 3-12. Three forms of data dependences

					Data dependences are expressed to the runtime in two ways:

					accessors and program order. Both must be used for the runtime to

					properly compute data dependences. This is illustrated in Figures 3-13

					and 3-14.

					80

					www. dbooks . or g

					[bookmark: 105_0]
					[bookmark: 105_1]
					[bookmark: 105_2]
				

			

		

		
			
				
					Chapter 3 Data ManageMent

					#include <CL/sycl.hpp>

					#include <array>

					using namespace sycl;

					constexpr int N = 42;

					int main() {

					std::array<int,N> a, b, c;

					for (int i = 0; i < N; i++) {

					a[i] = b[i] = c[i] = 0;

					}

					queue Q;

					// We will learn how to simplify this example later

					buffer A{a};

					buffer B{b};

					buffer C{c};

					Q.submit([&](handler &h) {

					accessor accA(A, h, read_only);

					accessor accB(B, h, write_only);

					h.parallel_for(// computeB

					N,

					[=](id<1> i) { accB[i] = accA[i] + 1; });

					});

					Q.submit([&](handler &h) {

					accessor accA(A, h, read_only);

					h.parallel_for(// readA

					N,

					[=](id<1> i) {

					// Useful only as an example

					int data = accA[i];

					});

					});

					Q.submit([&](handler &h) {

					// RAW of buffer B

					accessor accB(B, h, read_only);

					accessor accC(C, h, write_only);

					h.parallel_for(// computeC

					N,

					[=](id<1> i) { accC[i] = accB[i] + 2; });

					});

					// read C on host

					host_accessor host_accC(C, read_only);

					for (int i = 0; i < N; i++) {

					std::cout << host_accC[i] << " ";

					}

					std::cout << "\n";

					return 0;

					}

					Figure 3-13. Read-after-Write

					81

					[bookmark: 106_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 3 Data ManageMent

					Figure 3-14. RAW task graph

					In Figures 3-13 and 3-14, we execute three kernels—computeB,

					readA, and computeC—andthen read the final result back on the host.

					The command group for kernel computeBcreates two accessors, accA

					and accB. These accessors use access tags read_onlyand write_only

					for optimization to specify that we do not use the default access mode,

					access::mode::read_write. We will learn more about access tags in

					Chapter 7. Kernel computeBreads buffer Aand writes to buffer B. Buffer

					Amust be copied from the host to the device before the kernel begins

					execution.

					Kernel readAalso creates a read-only accessor for buffer A. Since

					kernel readAis submitted after kernel computeB, this creates a Read-after-

					Read (RAR) scenario. However, RARs do not place extra restrictions on the

					runtime, and the kernels are free to execute in any order. Indeed, a runtime

					might prefer to execute kernel readAbefore kernel computeBor even

					execute both at the same time. Both require buffer Ato be copied to the

					device, but kernel computeBalso requires buffer Bto be copied in case any

					82

					www. dbooks . or g

					[bookmark: 107_0]
					[bookmark: 107_1]
				

			

		

		
			
				
					Chapter 3 Data ManageMent

					existing values are not overwritten by computeBand which might be used

					by later kernels. This means that the runtime could execute kernel readA

					while the data transfer for buffer Boccurs and also shows that even if a

					kernel will only write to a buffer, the original content of the buffer may still

					be moved to the device because there is no guarantee that all values in the

					buffer will be written by a kernel (see Chapter 7 for tags that let us optimize

					in these cases).

					Kernel computeCreads buffer B, which we computed in kernel

					computeB. Since we submitted kernel computeCafter we submitted kernel

					computeB, this means that kernel computeChas a RAW data dependence

					on buffer B. RAW dependences are also called true dependences or flow

					dependences, as data needs to flow from one computation to another

					in order to compute the correct result. Finally, we also create a RAW

					dependence on buffer Cbetween kernel computeCand the host, since the

					host wants to read Cafter the kernel has finished. This forces the runtime

					to copy buffer Cback to the host. Since there were no writes to buffer Aon

					devices, the runtime does not need to copy that buffer back to the host

					because the host has an up-to-date copy already.

					83

				

			

		

		
			
				
					Chapter 3 Data ManageMent

					#include <CL/sycl.hpp>

					#include <array>

					using namespace sycl;

					constexpr int N = 42;

					int main() {

					std::array<int,N> a, b;

					for (int i = 0; i < N; i++) {

					a[i] = b[i] = 0;

					}

					queue Q;

					buffer A{a};

					buffer B{b};

					Q.submit([&](handler &h) {

					accessor accA(A, h, read_only);

					accessor accB(B, h, write_only);

					h.parallel_for(// computeB

					N, [=](id<1> i) {

					accB[i] = accA[i] + 1;

					});

					});

					Q.submit([&](handler &h) {

					// WAR of buffer A

					accessor accA(A, h, write_only);

					h.parallel_for(// rewriteA

					N, [=](id<1> i) {

					accA[i] = 21 + 21;

					});

					});

					Q.submit([&](handler &h) {

					// WAW of buffer B

					accessor accB(B, h, write_only);

					h.parallel_for(// rewriteB

					N, [=](id<1> i) {

					accB[i] = 30 + 12;

					});

					});

					host_accessor host_accA(A, read_only);

					host_accessor host_accB(B, read_only);

					for (int i = 0; i < N; i++) {

					std::cout << host_accA[i] << " " << host_accB[i] << " ";

					}

					std::cout << "\n";

					return 0;

					}

					Figure 3-15. Write-after-Read and Write-after-Write

					84

					www. dbooks . or g

					[bookmark: 109_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 3 Data ManageMent

					Figure 3-16. WAR and WAW task graph

					In Figures 3-15 and 3-16, we again execute three kernels: computeB,

					rewriteA, and rewriteB. Kernel computeBonce again reads buffer Aand

					writes to buffer B, kernel rewriteAwrites to buffer A, and kernel rewriteB

					writes to buffer B. Kernel rewriteAcould theoretically execute earlier than

					kernel computeBsince less data needs to be transferred before the kernel is

					ready, but it must wait until after kernel computeBfinishes since there is a

					WAR dependence on buffer A.

					In this example, kernel computeBrequires the original value of A

					from the host, and it would read the wrong values if kernel rewriteA

					executed before kernel computeB. WAR dependences are also called anti-

					dependences. RAW dependences ensure that data properly flows in the

					correct direction, while WAR dependences ensure existing values are not

					overwritten before they are read. The WAW dependence on buffer Bfound

					in kernel rewrite functions similarly. If there were any reads of buffer B

					submitted in between kernels computeBand rewriteB, they would result in

					RAW and WAR dependences that would properly order the tasks. However,

					there is an implicit dependence between kernel rewriteBand the host

					in this example since the final data must be written back to the host. We

					will learn more about what causes this writeback in Chapter 7. The WAW

					dependence, also called an output dependence, ensures that the final

					output will be correct on the host.

					85

					[bookmark: 110_0]
				

			

		

		
			
				
					Chapter 3 Data ManageMent

					Choosing a Data Management Strategy

					Selecting the right data management strategy for our applications is largely

					a matter of personal preference. Indeed, we may begin with one strategy

					and switch to another as our program matures. However, there are a few

					useful guidelines to help us to pick a strategy that will serve our needs.

					The first decision to make is whether we want to use explicit or

					implicit data movement since this greatly affects what we need to do

					to our program. Implicit data movement is generally an easier place to

					start because all the data movement is handled for us, letting us focus on

					expression of the computation.

					If we decide that we’d rather have full control over all data movement

					from the beginning, then explicit data movement using USM device

					allocations is where we want to start. We just need to be sure to add all the

					necessary copies between host and devices!

					When selecting an implicit data movement strategy, we still have a

					choice of whether to use buffers or USM host or shared pointers. Again,

					this choice is a matter of personal preference, but there are a few questions

					that could help guide us to one over the other. If we’re porting an existing

					C/C++ program that uses pointers, USM might be an easier path since

					most code won’t need to change. If data representation hasn’t guided

					us to a preference, another question we can ask is how we would like to

					express our dependences between kernels. If we prefer to think about data

					dependences between kernels, choose buffers. If we prefer to think about

					dependences as performing one computation before another and want

					to express that using an in-order queue or with explicit events or waiting

					between kernels, choose USM.

					86

					www. dbooks . or g

					[bookmark: 111_0]
					[bookmark: 111_1]
				

			

		

		
			
				
					Chapter 3 Data ManageMent

					When using USM pointers (with either explicit or implicit data

					movement), we have a choice of which type of queue we want to use. In-

					order queues are simple and intuitive, but they constrain the runtime and

					may limit performance. Out-of-order queues are more complex, but they

					give the runtime more freedom to re-order and overlap execution. The out-

					of-order queue class is the right choice if our program will have complex

					dependences between kernels. If our program simply runs many kernels

					one after another, then an in-order queue will be a better option for us.

					Handler Class: Key Members

					We have shown a number of ways to use the handlerclass. Figures 3-17

					and 3-18 provide a more detailed explanation of the key members of this

					very important class. We have not yet used all these members, but they will

					be used later in the book. This is as good a place as any to lay them out.

					A closely related class, the queueclass, is similarly explained at the end

					of Chapter 2. The online oneAPI DPC++ language reference provides an

					even more detailed explanation of both classes.

					87

					[bookmark: 112_0]
					[bookmark: 112_1]
				

			

		

		
			
				
					Chapter 3 Data ManageMent

					class handler {

					...

					// Specifies event(s) that must be complete before the action

					//

					defined in this command group executes.

					void depends_on({event / std::vector<event> & });

					// Enqueues a memset operation on the specified pointer.

					// Writes the first byte of Value into Count bytes.

					// Returns an event representing this operation.

					event memset(void *Ptr, int Value, size_t Count)

					// Enqueues a memcpy from Src to Dest.

					// Count bytes are copied.

					// Returns an event representing this operation.

					event memcpy(void *Dest, const void *Src, size_t Count);

					// Submits a kernel of one work-item for execution.

					// Returns an event representing this operation.

					template <typename KernelName, typename KernelType>

					event single_task(KernelType KernelFunc);

					// Submits a kernel with NumWork-items work-items for execution.

					// Returns an event representing this operation.

					template <typename KernelName, typename KernelType, int Dims>

					event parallel_for(range<Dims> NumWork-items, KernelType KernelFunc);

					// Submits a kernel for execution over the supplied nd_range.

					// Returns an event representing this operation.

					template <typename KernelName, typename KernelType, int Dims>

					event parallel_for(nd_range<Dims> ExecutionRange, KernelType KernelFunc);

					...

					};

					Figure 3-17. Simplified definition of the non-accessor members of the

					handler class

					88

					www. dbooks . or g

					[bookmark: 113_0]
				

			

		

		
			
				
					Chapter 3 Data ManageMent

					class handler {

					...

					// Specifies event(s) that must be complete before the action

					// Copy to/from an accessor.

					// Valid combinations:

					// Src: accessor,

					// Src: accessor,

					Dest: shared_ptr

					Dest: pointer

					// Src: shared_ptr Dest: accessor

					// Src: pointer

					Dest: accessor

					Dest: accessor

					// Src: accesssor

					template <typename T_Src, typename T_Dst,

					int Dims, access::mode AccessMode,

					access::target AccessTarget,

					access::placeholder IsPlaceholder =

					access::placeholder::false_t>

					void copy(accessor<T_Src, Dims, AccessMode,

					AccessTarget, IsPlaceholder> Src,

					shared_ptr_class<T_Dst> Dst);

					void copy(shared_ptr_class<T_Src> Src,

					accessor<T_Dst, Dims, AccessMode,

					AccessTarget, IsPlaceholder> Dst);

					void copy(accessor<T_Src, Dims, AccessMode,

					AccessTarget, IsPlaceholder> Src,

					T_Dst *Dst);

					void copy(const T_Src *Src,

					accessor<T_Dst, Dims, AccessMode,

					AccessTarget, IsPlaceholder> Dst);

					template <

					typename T_Src, int Dims_Src,

					access::mode AccessMode_Src,

					access::target AccessTarget_Src,

					typename T_Dst, int Dims_Dst,

					access::mode AccessMode_Dst,

					access::target AccessTarget_Dst,

					access::placeholder IsPlaceholder_Src =

					access::placeholder::false_t,

					access::placeholder IsPlaceholder_Dst =

					access::placeholder::false_t>

					void copy(accessor<T_Src, Dims_Src, AccessMode_Src,

					AccessTarget_Src, IsPlaceholder_Src>

					Src,

					accessor<T_Dst, Dims_Dst, AccessMode_Dst,

					AccessTarget_Dst, IsPlaceholder_Dst>

					Dst);

					// Provides a guarantee that the memory object accessed by the accessor

					// is updated on the host after this action executes.

					template <typename T, int Dims,

					access::mode AccessMode,

					access::target AccessTarget,

					access::placeholder IsPlaceholder =

					access::placeholder::false_t>

					void update_host(accessor<T, Dims, AccessMode,

					AccessTarget, IsPlaceholder> Acc);

					...

					};

					Figure 3-18. Simplified definition of the accessor members of the

					handler class

					89

					[bookmark: 114_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 3 Data ManageMent

					Summary

					In this chapter, we have introduced the mechanisms that address the

					problems of data management and how to order the uses of data.

					Managing access to different memories is a key challenge when using

					accelerator devices, and we have different options to suit our needs.

					We provided an overview of the different types of dependences that

					can exist between the uses of data, and we described how to provide

					information about these dependences to queues so that they properly

					order tasks.

					This chapter provided an overview of Unified Shared Memory and

					buffers. We will explore all the modes and behaviors of USM in greater

					detail in Chapter 6. Chapter 7 will explore buffers more deeply, including all

					the different ways to create buffers and control their behavior. Chapter 8 will

					revisit the scheduling mechanisms for queues that control the ordering of

					kernel executions and data movements.

					Open Access This chapter is licensed under the terms

					of the Creative Commons Attribution 4.0 International

					License (http://creativecommons.org/licenses/by/4.0/), which permits

					use, sharing, adaptation, distribution and reproduction in any medium or

					format, as long as you give appropriate credit to the original author(s) and

					the source, provide a link to the Creative Commons license and indicate if

					changes were made.

					The images or other third party material in this chapter are included

					in the chapter’s Creative Commons license, unless indicated otherwise

					in a credit line to the material. If material is not included in the chapter’s

					Creative Commons license and your intended use is not permitted by

					statutory regulation or exceeds the permitted use, you will need to obtain

					permission directly from the copyright holder.

					90

					www. dbooks . or g

					[bookmark: 115_0]
				

			

		

		
			
				
					
				
			

			
				
					CHAPTER 4

					Expressing Parallelism

					fers

					USM

					buf

					ernels

					accessors

					k

					queue

					devices

					lambdas

					THINK

					ALLEL

					CL

					Y

					P

					AR

					S

					onos

					Khr

					C++17

					Now we can put together our first collection of puzzle pieces. We

					already know how to place code (Chapter 2) and data (Chapter 3) on

					a device—all we must do now is engage in the art of deciding what to

					do with it. To that end, we now shift to fill in a few things that we have

					conveniently left out or glossed over so far. This chapter marks the

					transition from simple teaching examples toward real-world parallel

					code and expands upon details of the code samples we have casually

					shown in prior chapters.

					© Intel Corporation 2021

					J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-5574-2_4

					91

					[bookmark: 116_0]
				

			

		

		
			
				
					Chapter 4 expressing parallelism

					Writing our first program in a new parallel language may seem like a

					daunting task, especially if we are new to parallel programming. Language

					specifications are not written for application developers and often assume

					some familiarity with terminology; they do not contain answers to

					questions like these:

					•

					•

					•

					Why is there more than one way to express parallelism?

					Which method of expressing parallelism should I use?

					How much do I really need to know about the

					execution model?

					This chapter seeks to address these questions and more. We introduce

					the concept of a data-parallel kernel, discuss the strengths and weaknesses

					of the different kernel forms using working code examples, and highlight

					the most important aspects of the kernel execution model.

					Parallelism Within Kernels

					Parallel kernels have emerged in recent years as a powerful means

					of expressing data parallelism. The primary design goals of a kernel-

					based approach are portability across a wide range of devices and high

					programmer productivity. As such, kernels are typically not hard-coded

					to work with a specific number or configuration of hardware resources

					(e.g., cores, hardware threads, SIMD [Single Instruction, Multiple Data]

					instructions). Instead, kernels describe parallelism in terms of abstract

					concepts that an implementation (i.e., the combination of compiler and

					runtime) can then map to the hardware parallelism available on a specific

					target device. Although this mapping is implementation-defined, we can

					(and should) trust implementations to select a mapping that is sensible

					and capable of effectively exploiting hardware parallelism.

					92

					www. dbooks . or g

					[bookmark: 117_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 4 expressing parallelism

					Exposing a great deal of parallelism in a hardware-agnostic way

					ensures that applications can scale up (or down) to fit the capabilities of

					different platforms, but…

					guaranteeing functional portability is not the same as guaranteeing

					high performance!

					There is a significant amount of diversity in the devices supported,

					and we must remember that different architectures are designed and

					optimized for different use cases. Whenever we hope to achieve the

					highest levels of performance on a specific device, we should always

					expect that some additional manual optimization work will be required—

					regardless of the programming language we’re using! Examples of such

					device-specific optimizations include blocking for a particular cache

					size, choosing a grain size that amortizes scheduling overheads, making

					use of specialized instructions or hardware units, and, most importantly,

					choosing an appropriate algorithm. Some of these examples will be

					revisited in Chapters 15, 16, and 17.

					Striking the right balance between performance, portability, and

					productivity during application development is a challenge that we must

					all face—and a challenge that this book cannot address in its entirety.

					However, we hope to show that DPC++ provides all the tools required to

					maintain both generic portable code and optimized target-specific code

					using a single high-level programming language. The rest is left as an

					exercise to the reader!

					Multidimensional Kernels

					The parallel constructs of many other languages are one-dimensional,

					mapping work directly to a corresponding one-dimensional hardware

					resource (e.g., number of hardware threads). Parallel kernels are

					93

					[bookmark: 118_0]
					[bookmark: 118_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 4 expressing parallelism

					a higher-level concept than this, and their dimensionality is more

					reflective of the problems that our codes are typically trying to solve (in a

					one-, two-, or three-dimensional space).

					However, we must remember that the multidimensional indexing

					provided by parallel kernels is a programmer convenience implemented

					on top of an underlying one-dimensional space. Understanding how this

					mapping behaves can be an important part of certain optimizations (e.g.,

					tuning memory access patterns).

					One important consideration is which dimension is contiguous or

					unit-stride (i.e., which locations in the multidimensional space are next to

					each other in the one-dimensional space). All multidimensional quantities

					related to parallelism in SYCL use the same convention: dimensions

					are numbered from 0 to N-1, where dimension N-1 corresponds to the

					contiguous dimension. Wherever a multidimensional quantity is written as

					a list (e.g., in constructors) or a class supports multiple subscript operators,

					this numbering applies left to right. This convention is consistent with the

					behavior of multidimensional arrays in standard C++.

					An example of mapping a two-dimensional space to a linear index

					using the SYCL convention is shown in Figure 4-1. We are of course free

					to break from this convention and adopt our own methods of linearizing

					indices, but must do so carefully—breaking from the SYCL convention may

					have a negative performance impact on devices that benefit from stride-

					one accesses.

					Figure 4-1. Two-dimensional range of size (2, 8) mapped to linear

					indices

					94

					www. dbooks . or g

					[bookmark: 119_0]
				

			

		

		
			
				
					Chapter 4 expressing parallelism

					If an application requires more than three dimensions, we must take

					responsibility for mapping between multidimensional and linear indices

					manually, using modulo arithmetic.

					Loops vs. Kernels

					An iterative loop is an inherently serial construct: each iteration of the

					loop is executed sequentially (i.e., in order). An optimizing compiler may

					be able to determine that some or all iterations of a loop can execute in

					parallel, but it must be conservative—if the compiler isn’t smart enough or

					doesn’t have enough information to prove that parallel execution is always

					safe, it must preserve the loop’s sequential semantics for correctness.

					for (int i = 0; i < N; ++i) {

					c[i] = a[i] + b[i];

					}

					Figure 4-2. Expressing a vector addition as a serial loop

					Consider the loop in Figure 4-2, which describes a simple vector

					addition. Even in a simple case like this, proving that the loop can be

					executed in parallel is not trivial: parallel execution is only safe if cdoes

					not overlap aor b, which in the general case cannot be proven without

					a runtime check! In order to address situations like this, languages have

					added features enabling us to provide compilers with extra information

					that may simplify analysis (e.g., asserting that pointers do not overlap

					with restrict) or to override all analysis altogether (e.g., declaring that

					all iterations of a loop are independent or defining exactly how the loop

					should be scheduled to parallel resources).

					The exact meaning of a parallel loop is somewhat ambiguous—due

					to overloading of the term by different parallel programming languages—

					but many common parallel loop constructs represent compiler

					transformations applied to sequential loops. Such programming models

					95

					[bookmark: 120_0]
					[bookmark: 120_1]
					[bookmark: 120_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 4 expressing parallelism

					enable us to write sequential loops and only later provide information

					about how different iterations can be executed safely in parallel. These

					models are very powerful, integrate well with other state-of-the-art

					compiler optimizations, and greatly simplify parallel programming, but

					do not always encourage us to think about parallelism at an early stage of

					development.

					A parallel kernel is not a loop, and does not have iterations. Rather, a

					kernel describes a single operation, which can be instantiated many times

					and applied to different input data; when a kernel is launched in parallel,

					multiple instances of that operation are executed simultaneously.

					launch N kernel instances {

					int id = get_instance_id(); // unique identifier in [0, N)

					c[id] = a[id] + b[id];

					}

					Figure 4-3. Loop rewritten (in pseudocode) as a parallel kernel

					Figure 4-3 shows our simple loop example rewritten as a kernel using

					pseudocode. The opportunity for parallelism in this kernel is clear and

					explicit: the kernel can be executed in parallel by any number of instances,

					and each instance independently applies to a separate piece of data. By

					writing this operation as a kernel, we are asserting that it is safe to run in

					parallel (and ideally should be).

					In short, kernel-based programming is not a way to retrofit parallelism

					into existing sequential codes, but a methodology for writing explicitly

					parallel applications.

					the sooner that we can shift our thinking from parallel loops to

					kernels, the easier it will be to write effective parallel programs using

					Data parallel C++.

					96

					www. dbooks . or g

					[bookmark: 121_0]
					[bookmark: 121_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 4 expressing parallelism

					Overview of Language Features

					Once we’ve decided to write a parallel kernel, we must decide what type of

					kernel we want to launch and how to represent it in our program. There are

					a multitude of ways to express parallel kernels, and we need to familiarize

					ourselves with each of these options if we want to master the language.

					Separating Kernels from Host Code

					We have several alternative ways to separate host and device code, which

					we can mix and match within an application: C++ lambda expressions or

					function objects (functors), OpenCL C source strings, or binaries. Some

					of these options were already covered in Chapter 2, and all of them will be

					covered in more detail in Chapter 10.

					The fundamental concepts of expressing parallelism are shared by all

					these options. For consistency and brevity, all the code examples in this

					chapter express kernels using C++ lambdas.

					LAMBDAS NOT CONSIDERED HARMFUL

					there is no need to fully understand everything that the C++ specification

					says about lambdas in order to get started with DpC++—all we need to

					know is that the body of the lambda represents the kernel and that variables

					captured (by value) will be passed to the kernel as arguments.

					there is no performance impact arising from the use of lambdas instead of

					more verbose mechanisms for defining kernels. a DpC++ compiler always

					understands when a lambda represents the body of a parallel kernel and can

					optimize for parallel execution accordingly.

					For a refresher on C++ lambda functions, with notes about their use in sYCl,

					see Chapter 1. For more specific details on using lambdas to define kernels,

					see Chapter 10.

					97

					[bookmark: 122_0]
					[bookmark: 122_1]
				

			

		

		
			
				
					Chapter 4 expressing parallelism

					Different Forms of Parallel Kernels

					There are three different kernel forms, supporting different execution

					models and syntax. It is possible to write portable kernels using any of

					the kernel forms, and kernels written in any form can be tuned to achieve

					high performance on a wide variety of device types. However, there will be

					times when we may want to use a specific form to make a specific parallel

					algorithm easier to express or to make use of an otherwise inaccessible

					language feature.

					The first form is used for basic data-parallel kernels and offers the

					gentlest introduction to writing kernels. With basic kernels, we sacrifice

					control over low-level features like scheduling in order to make the

					expression of the kernel as simple as possible. How the individual kernel

					instances are mapped to hardware resources is controlled entirely by the

					implementation, and so as basic kernels grow in complexity, it becomes

					harder and harder to reason about their performance.

					The second form extends basic kernels to provide access to low-level

					performance-tuning features. This second form is known as ND-range

					(N-dimensional range) data parallel for historical reasons, and the most

					important thing to remember is that it enables certain kernel instances to

					be grouped together, allowing us to exert some control over data locality

					and the mapping between individual kernel instances and the hardware

					resources that will be used to execute them.

					The third form provides an alternative syntax to simplify the expression

					of ND-range kernels using nested kernel constructs. This third form is

					referred to as hierarchical data parallel, referring to the hierarchy of the

					nested kernel constructs that appear in user source code.

					We will revisit how to choose between the different kernel forms again

					at the end of this chapter, once we’ve discussed their features in more

					detail.

					98

					www. dbooks . or g

					[bookmark: 123_0]
				

			

		

		
			
				
					Chapter 4 expressing parallelism

					Basic Data-Parallel Kernels

					The most basic form of parallel kernel is appropriate for operations that

					are embarrassingly parallel (i.e., operations that can be applied to every

					piece of data completely independently and in any order). By using this

					form, we give an implementation complete control over the scheduling of

					work. It is thus an example of a descriptive programming construct—we

					describe that the operation is embarrassingly parallel, and all scheduling

					decisions are made by the implementation.

					Basic data-parallel kernels are written in a Single Program, Multiple

					Data (SPMD) style—a single “program” (the kernel) is applied to multiple

					pieces of data. Note that this programming model still permits each

					instance of the kernel to take different paths through the code, as a result

					of data-dependent branches.

					One of the greatest strengths of a SPMD programming model is that it

					allows the same “program” to be mapped to multiple levels and types of

					parallelism, without any explicit direction from us. Instances of the same

					program could be pipelined, packed together and executed with SIMD

					instructions, distributed across multiple threads, or a mix of all three.

					Understanding Basic Data-Parallel Kernels

					The execution space of a basic parallel kernel is referred to as its execution

					range, and each instance of the kernel is referred to as an item. This is

					represented diagrammatically in Figure 4-4.

					99

					[bookmark: 124_0]
					[bookmark: 124_1]
					[bookmark: 124_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 4 expressing parallelism

					¬·¨°ꢀº¬·«

					ꢀꢀꢀꢀꢀꢀLGꢃꢁꢄꢁꢅ

					UDQJHꢀ>ꢂ@ꢀ

					¬·¨°ꢀº¬·«

					ꢀLGꢃꢆꢄꢇꢅ

					Figure 4-4. Execution space of a basic parallel kernel, shown for a 2D

					range of 64 items

					The execution model of basic data-parallel kernels is very simple: it

					allows for completely parallel execution, but does not guarantee or require

					it. Items can be executed in any order, including sequentially on a single

					hardware thread (i.e., without any parallelism)! Kernels that assume that all

					items will be executed in parallel (e.g., by attempting to synchronize items)

					could therefore very easily cause programs to hang on some devices.

					However, in order to guarantee correctness, we must always write

					our kernels under the assumption that they could be executed in parallel.

					For example, it is our responsibility to ensure that concurrent accesses to

					memory are appropriately guarded by atomic memory operations (see

					Chapter 19) in order to prevent race conditions.

					Writing Basic Data-Parallel Kernels

					Basic data-parallel kernels are expressed using the parallel_forfunction.

					Figure 4-5 shows how to use this function to express a vector addition,

					which is our take on “Hello, world!” for parallel accelerator programming.

					100

					www. dbooks . or g

					[bookmark: 125_0]
					[bookmark: 125_1]
					[bookmark: 125_2]
				

			

		

		
			
				
					Chapter 4 expressing parallelism

					h.parallel_for(range{N}, [=](id<1> idx) {

					c[idx] = a[idx] + b[idx];

					});

					Figure 4-5. Expressing a vector addition kernel with parallel_for

					The function only takes two arguments: the first is a rangespecifying

					the number of items to launch in each dimension, and the second is a

					kernel function to be executed for each index in the range. There are

					several different classes that can be accepted as arguments to a kernel

					function, and which should be used depends on which class exposes the

					functionality required—we’ll revisit this later.

					Figure 4-6 shows a very similar use of this function to express a matrix

					addition, which is (mathematically) identical to vector addition except

					with two-dimensional data. This is reflected by the kernel—the only

					difference between the two code snippets is the dimensionality of the

					rangeand idclasses used! It is possible to write the code this way because

					a SYCL accessorcan be indexed by a multidimensional id. As strange as it

					looks, this can be very powerful, enabling us to write kernels templated on

					the dimensionality of our data.

					h.parallel_for(range{N, M}, [=](id<2> idx) {

					c[idx] = a[idx] + b[idx];

					});

					Figure 4-6. Expressing a matrix addition kernel with parallel_for

					It is more common in C/C++ to use multiple indices and multiple

					subscript operators to index multidimensional data structures, and this

					explicit indexing is also supported by accessors. Using multiple indices

					in this way can improve readability when a kernel operates on data of

					different dimensionalities simultaneously or when the memory access

					patterns of a kernel are more complicated than can be described by using

					an item’s iddirectly.

					101

					[bookmark: 126_0]
					[bookmark: 126_1]
					[bookmark: 126_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 4 expressing parallelism

					For example, the matrix multiplication kernel in Figure 4-7 must

					extract the two individual components of the index in order to be able to

					describe the dot product between rows and columns of the two matrices.

					In our opinion, consistently using multiple subscript operators (e.g.,

					[j][k]) is more readable than mixing multiple indexing modes and

					constructing two-dimensional idobjects (e.g., id(j,k)), but this is simply

					a matter of personal preference.

					The examples in the remainder of this chapter all use multiple

					subscript operators, to ensure that there is no ambiguity in the

					dimensionality of the buffers being accessed.

					h.parallel_for(range{N, N}, [=](id<2> idx) {

					int j = idx[0];

					int i = idx[1];

					for (int k = 0; k < N; ++k) {

					c[j][i] += a[j][k]

					* b[k][i];

					// c[idx] += a[id(j,k) * b[id(k,i)]; <<< equivalent

					}

					});

					Figure 4-7. Expressing a naïve matrix multiplication kernel for

					square matrices, with parallel_for

					Figure 4-8. Mapping matrix multiplication work to items in the

					execution range

					102

					www. dbooks . or g

					[bookmark: 127_0]
					[bookmark: 127_1]
				

			

		

		
			
				
					Chapter 4 expressing parallelism

					The diagram in Figure 4-8 shows how the work in our matrix

					multiplication kernel is mapped to individual items. Note that the number

					of items is derived from the size of the output range and that the same

					input values may be read by multiple items: each item computes a single

					value of the C matrix, by iterating sequentially over a (contiguous) row of

					the A matrix and a (non-contiguous) column of the B matrix.

					Details of Basic Data-Parallel Kernels

					The functionality of basic data-parallel kernels is exposed via three C++

					classes: range, id, and item. We’ve already seen the rangeand idclasses

					a few times in previous chapters, but we revisit them here with a different

					focus.

					The range Class

					A rangerepresents a one-, two-, or three-dimensional range. The

					dimensionality of a rangeis a template argument and must therefore be

					known at compile time, but its size in each dimension is dynamic and is

					passed to the constructor at runtime. Instances of the rangeclass are used

					to describe both the execution ranges of parallel constructs and the sizes of

					buffers.

					A simplified definition of the rangeclass, showing the constructors and

					various methods for querying its extent, is shown in Figure 4-9.

					103

					[bookmark: 128_0]
					[bookmark: 128_1]
				

			

		

		
			
				
					Chapter 4 expressing parallelism

					template <int Dimensions = 1>

					class range {

					public:

					// Construct a range with one, two or three dimensions

					range(size_t dim0);

					range(size_t dim0, size_t dim1);

					range(size_t dim0, size_t dim1, size_t dim2);

					// Return the size of the range in a specific dimension

					size_t get(int dimension) const;

					size_t &operator[](int dimension);

					size_t operator[](int dimension) const;

					// Return the product of the size of each dimension

					size_t size() const;

					// Arithmetic operations on ranges are also supported

					};

					Figure 4-9. Simplified definition of the range class

					The id Class

					An idrepresents an index into a one, two-, or three-dimensional range. The

					definition of idis similar in many respects to range: its dimensionality must

					also be known at compile time, and it may be used to index an individual

					instance of a kernel in a parallel construct or an offset into a buffer.

					As shown by the simplified definition of the idclass in Figure 4-10,

					an idis conceptually nothing more than a container of one, two, or three

					integers. The operations available to us are also very simple: we can query

					the component of an index in each dimension, and we can perform simple

					arithmetic to compute new indices.

					Although we can construct an idto represent an arbitrary index, to

					obtain the idassociated with a specific kernel instance, we must accept

					it (or an itemcontaining it) as an argument to a kernel function. This id

					(or values returned by its member functions) must be forwarded to any

					function in which we want to query the index—there are not currently any

					free functions for querying the index at arbitrary points in a program, but

					this may be addressed by a future version of DPC++.

					104

					www. dbooks . or g

					[bookmark: 129_0]
					[bookmark: 129_1]
				

			

		

		
			
				
					Chapter 4 expressing parallelism

					Each instance of a kernel accepting an idknows only the index in the

					range that it has been assigned to compute and knows nothing about the

					range itself. If we want our kernel instances to know about their own index

					and the range, we need to use the itemclass instead.

					template <int Dimensions = 1>

					class id {

					public:

					// Construct an id with one, two or three dimensions

					id(size_t dim0);

					id(size_t dim0, size_t dim1);

					id(size_t dim0, size_t dim1, size_t dim2);

					// Return the component of the id in a specific dimension

					size_t get(int dimension) const;

					size_t &operator[](int dimension);

					size_t operator[](int dimension) const;

					// Arithmetic operations on ids are also supported

					};

					Figure 4-10. Simplified definition of the id class

					The item Class

					An itemrepresents an individual instance of a kernel function,

					encapsulating both the execution range of the kernel and the instance’s

					index within that range (using a rangeand an id, respectively). Like range

					and id, its dimensionality must be known at compile time.

					A simplified definition of the itemclass is given in Figure 4-11. The

					main difference between itemand idis that itemexposes additional

					functions to query properties of the execution range (e.g., size, offset) and

					a convenience function to compute a linearized index. As with id, the

					only way to obtain the itemassociated with a specific kernel instance is to

					accept it as an argument to a kernel function.

					105

					[bookmark: 130_0]
					[bookmark: 130_1]
				

			

		

		
			
				
					Chapter 4 expressing parallelism

					template <int Dimensions = 1, bool WithOffset = true>

					class item {

					public:

					// Return the index of this item in the kernel's execution range

					id<Dimensions> get_id() const;

					size_t get_id(int dimension) const;

					size_t operator[](int dimension) const;

					// Return the execution range of the kernel executed by this item

					range<Dimensions> get_range() const;

					size_t get_range(int dimension) const;

					// Return the offset of this item (if with_offset == true)

					id<Dimensions> get_offset() const;

					// Return the linear index of this item

					// e.g. id(0) * range(1) * range(2) + id(1) * range(2) + id(2)

					size_t get_linear_id() const;

					};

					Figure 4-11. Simplified definition of the item class

					Explicit ND-Range Kernels

					The second form of parallel kernel replaces the flat execution range of

					basic data-parallel kernels with an execution range where items belong to

					groups and is appropriate for cases where we would like to express some

					notion of locality within our kernels. Different behaviors are defined and

					guaranteed for different types of groups, giving us more insight into and/or

					control over how work is mapped to specific hardware platforms.

					These explicit ND-range kernels are thus an example of a more

					prescriptive parallel construct—we prescribe a mapping of work to each

					type of group, and the implementation must obey that mapping. However,

					it is not completely prescriptive, as the groups themselves may execute in

					any order and an implementation retains some freedom over how each

					type of group is mapped to hardware resources. This combination of

					prescriptive and descriptive programming enables us to design and tune

					our kernels for locality without impacting their portability.

					Like basic data-parallel kernels, ND-range kernels are written in a

					SPMD style where all work-items execute the same kernel "program"

					applied to multiple pieces of data. The key difference is that each program

					106

					www. dbooks . or g

					[bookmark: 131_0]
					[bookmark: 131_1]
					[bookmark: 131_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 4 expressing parallelism

					instance can query its position within the groups that contain it and can

					access additional functionality specific to each type of group.

					Understanding Explicit ND-Range Parallel Kernels

					The execution range of an ND-range kernel is divided into work-groups,

					sub-groups, and work-items. The ND-range represents the total execution

					range, which is divided into work-groups of uniform size (i.e., the work-

					group size must divide the ND-range size exactly in each dimension). Each

					work-group can be further divided by the implementation into sub-groups.

					Understanding the execution model defined for work-items and each type

					of group is an important part of writing correct and portable programs.

					Figure 4-12 shows an example of an ND-range of size (8, 8, 8) divided into

					8 work-groups of size (4, 4, 4). Each work-group contains 16 one-dimensional

					sub-groups of 4 work-items. Pay careful attention to the numbering of the

					dimensions: sub-groups are always one-dimensional, and so dimension 2 of

					the ND-range and work-group becomes dimension 0 of the sub-group.

					Figure 4-12. Three-dimensional ND-range divided into work-groups,

					sub-groups, and work-items

					107

					[bookmark: 132_0]
					[bookmark: 132_1]
					[bookmark: 132_2]
				

			

		

		
			
				
					Chapter 4 expressing parallelism

					The exact mapping from each type of group to hardware resources

					is implementation-defined, and it is this flexibility that enables programs

					to execute on a wide variety of hardware. For example, work-items could

					be executed completely sequentially, executed in parallel by hardware

					threads and/or SIMD instructions, or even executed by a hardware

					pipeline specifically configured for a specific kernel.

					In this chapter, we are focused only on the semantic guarantees of the

					ND-range execution model in terms of a generic target platform, and we

					will not cover its mapping to any one platform. See Chapters 15, 16, and 17

					for details of the hardware mapping and performance recommendations

					for GPUs, CPUs, and FPGAs, respectively.

					Work-Items

					Work-items represent the individual instances of a kernel function. In the

					absence of other groupings, work-items can be executed in any order and

					cannot communicate or synchronize with each other except by way of

					atomic memory operations to global memory (see Chapter 19).

					Work-Groups

					The work-items in an ND-range are organized into work-groups. Work-

					groups can execute in any order, and work-items in different work-groups

					cannot communicate with each other except by way of atomic memory

					operations to global memory (see Chapter 19). However, the work-items

					within a work-group have concurrent scheduling guarantees when certain

					constructs are used, and this locality provides some additional capabilities:

					1. Work-items in a work-group have access to work-

					group local memory, which may be mapped to

					a dedicated fast memory on some devices (see

					Chapter 9).

					108

					www. dbooks . or g

					[bookmark: 133_0]
				

			

		

		
			
				
					Chapter 4 expressing parallelism

					2. Work-items in a work-group can synchronize

					using work-group barriers and guarantee memory

					consistency using work-group memory fences (see

					Chapter 9).

					3. Work-items in a work-group have access to group

					functions, providing implementations of common

					communication routines (see Chapter 9) and

					common parallel patterns such as reductions and

					scans (see Chapter 14).

					The number of work-items in a work-group is typically configured

					for each kernel at runtime, as the best grouping will depend upon both

					the amount of parallelism available (i.e., the size of the ND-range) and

					properties of the target device. We can determine the maximum number of

					work-items per work-group supported by a specific device using the query

					functions of the deviceclass (see Chapter 12), and it is our responsibility

					to ensure that the work-group size requested for each kernel is valid.

					There are some subtleties in the work-group execution model that are

					worth emphasizing.

					First, although the work-items in a work-group are scheduled to a

					single compute unit, there need not be any relationship between the

					number of work-groups and the number of compute units. In fact, the

					number of work-groups in an ND-range can be many times larger than

					the number of work-groups that a given device can execute concurrently!

					We may be tempted to try and write kernels that synchronize across

					work-groups by relying on very clever device-specific scheduling, but we

					strongly recommend against doing this—such kernels may appear to work

					today, but they are not guaranteed to work with future implementations

					and are highly likely to break when moved to a different device.

					Second, although the work-items in a work-group are scheduled

					concurrently, they are not guaranteed to make independent forward

					progress—executing the work-items within a work-group sequentially

					109

				

			

		

		
			
				
					
				
			

			
				
					Chapter 4 expressing parallelism

					between barriers and collectives is a valid implementation.

					Communication and synchronization between work-items in the same

					work-group is only guaranteed to be safe when performed using the barrier

					and collective functions provided, and hand-coded synchronization

					routines may deadlock.

					THINKING IN WORK-GROUPS

					Work-groups are similar in many respects to the concept of a task in other

					programming models (e.g., threading Building Blocks): tasks can execute

					in any order (controlled by a scheduler); it’s possible (and even desirable) to

					oversubscribe a machine with tasks; and it’s often not a good idea to try and

					implement a barrier across a group of tasks (as it may be very expensive or

					incompatible with the scheduler). if we’re already familiar with a task-based

					programming model, we may find it useful to think of work-groups as though

					they are data-parallel tasks.

					Sub-Groups

					On many modern hardware platforms, subsets of the work-items in a

					work-group known as sub-groups are executed with additional scheduling

					guarantees. For example, the work-items in a sub-group could be executed

					simultaneously as a result of compiler vectorization, and/or the sub-

					groups themselves could be executed with forward progress guarantees

					because they are mapped to independent hardware threads.

					When working with a single platform, it is tempting to bake

					assumptions about these execution models into our codes, but this makes

					them inherently unsafe and non-portable—they may break when moving

					between different compilers or even when moving between different

					generations of hardware from the same vendor!

					110

					www. dbooks . or g

					[bookmark: 135_0]
				

			

		

		
			
				
					Chapter 4 expressing parallelism

					Defining sub-groups as a core part of the language gives us a safe

					alternative to making assumptions that may later prove to be device-

					specific. Leveraging sub-group functionality also allows us to reason about

					the execution of work-items at a low level (i.e., close to hardware) and is

					key to achieving very high levels of performance across many platforms.

					As with work-groups, the work-items within a sub-group can

					synchronize, guarantee memory consistency, or execute common parallel

					patterns via group functions. However, there is no equivalent of work-

					group local memory for sub-groups (i.e., there is no sub-group local

					memory). Instead, the work-items in a sub-group can exchange data

					directly—without explicit memory operations—using shuffle operations

					(Chapter 9).

					Some aspects of sub-groups are implementation-defined and outside

					of our control. However, a sub-group has a fixed (one-dimensional) size for

					a given combination of device, kernel, and ND-range, and we can query

					this size using the query functions of the kernelclass (see Chapter 10).

					By default, the number of work-items per sub-group is also chosen by the

					implementation—we can override this behavior by requesting a particular

					sub-group size at compile time, but must ensure that the sub-group size

					we request is compatible with the device.

					Like work-groups, the work-items in a sub-group are only guaranteed

					to execute concurrently—an implementation is free to execute each work-

					item in a sub-group sequentially and only switch between work-items

					when a sub-group collective function is encountered. Where sub-groups

					are special is that some devices guarantee that they make independent

					forward progress—on some devices, all sub-groups within a work-

					group are guaranteed to execute (make progress) eventually, which is a

					cornerstone of several producer-consumer patterns. Whether or not this

					independent forward progress guarantee holds can be determined using a

					device query.

					111

				

			

		

		
			
				
					
				
			

			
				
					Chapter 4 expressing parallelism

					THINKING IN SUB-GROUPS

					if we are coming from a programming model that requires us to think about

					explicit vectorization, it may be useful to think of each sub-group as a set of

					work-items packed into a simD register, where each work-item in the sub-

					group corresponds to a simD lane. When multiple sub-groups are in flight

					simultaneously and a device guarantees they will make forward progress, this

					mental model extends to treating each sub-group as though it were a separate

					stream of vector instructions executing in parallel.

					range global{N, N};

					range local{B, B};

					h.parallel_for(nd_range{global, local}, [=](nd_item<2> it) {

					int j = it.get_global_id(0);

					int i = it.get_global_id(1);

					for (int k = 0; k < N; ++k)

					c[j][i] += a[j][k] * b[k][i];

					});

					Figure 4-13. Expressing a naïve matrix multiplication kernel with

					ND-range parallel_for

					Writing Explicit ND-Range Data-Parallel Kernels

					Figure 4-13 re-implements the matrix multiplication kernel that we saw

					previously using the ND-range parallel kernel syntax, and the diagram in

					Figure 4-14 shows how the work in this kernel is mapped to the work-items

					in each work-group. Grouping our work-items in this way ensures locality

					of access and hopefully improves cache hit rates: for example, the work-

					group in Figure 4-14 has a local range of (4, 4) and contains 16 work-items,

					but only accesses four times as much data as a single work-item—in other

					words, each value we load from memory can be reused four times.

					112

					www. dbooks . or g

					[bookmark: 137_0]
					[bookmark: 137_1]
					[bookmark: 137_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 4 expressing parallelism

					Figure 4-14. Mapping matrix multiplication to work-groups and

					work-items

					So far, our matrix multiplication example has relied on a hardware

					cache to optimize repeated accesses to the A and B matrices from work-

					items in the same work-group. Such hardware caches are commonplace

					on traditional CPU architectures and are becoming increasingly so on GPU

					architectures, but there are other architectures (e.g., previous-generation

					GPUs, FPGAs) with explicitly managed “scratchpad” memories. ND-range

					kernels can use local accessors to describe allocations that should be

					placed in work-group local memory, and an implementation is then free

					to map these allocations to special memory (where it exists). Usage of this

					work-group local memory will be covered in Chapter 9.

					Details of Explicit ND-Range Data-Parallel

					Kernels

					ND-range data-parallel kernels use different classes compared to basic

					data-parallel kernels: rangeis replaced by nd_range,and itemis replaced

					by nd_item. There are also two new classes, representing the different

					types of groups to which a work-item may belong: functionality tied to

					work-groups is encapsulated in the groupclass, and functionality tied to

					sub-groups is encapsulated in the sub_groupclass.

					113

					[bookmark: 138_0]
					[bookmark: 138_1]
					[bookmark: 138_2]
				

			

		

		
			
				
					Chapter 4 expressing parallelism

					The nd_range Class

					An nd_rangerepresents a grouped execution range using two instances

					of the rangeclass: one denoting the global execution range and another

					denoting the local execution range of each work-group. A simplified

					definition of the nd_rangeclass is given in Figure 4-15.

					It may be a little surprising that the nd_rangeclass does not mention

					sub-groups at all: the sub-group range is not specified during construction

					and cannot be queried. There are two reasons for this omission. First,

					sub-groups are a low-level implementation detail that can be ignored

					for many kernels. Second, there are several devices supporting exactly

					one valid sub-group size, and specifying this size everywhere would

					be unnecessarily verbose. All functionality related to sub-groups is

					encapsulated in a dedicated class that will be discussed shortly.

					template <int Dimensions = 1>

					class nd_range {

					public:

					// Construct an nd_range from global and work-group local ranges

					nd_range(range<Dimensions> global, range<Dimensions> local);

					// Return the global and work-group local ranges

					range<Dimensions> get_global_range() const;

					range<Dimensions> get_local_range() const;

					// Return the number of work-groups in the global range

					range<Dimensions> get_group_range() const;

					};

					Figure 4-15. Simplified definition of the nd_range class

					The nd_item Class

					An nd_itemis the ND-range form of an item, again encapsulating the

					execution range of the kernel and the item’s index within that range.

					Where nd_itemdiffers from itemis in how its position in the range is queried

					and represented, as shown by the simplified class definition in Figure 4-16.

					114

					www. dbooks . or g

					[bookmark: 139_0]
					[bookmark: 139_1]
				

			

		

		
			
				
					Chapter 4 expressing parallelism

					For example, we can query the item’s index in the (global) ND-range using

					the get_global_id()function or the item’s index in its (local) parent work-

					group using the get_local_id()function.

					The nd_itemclass also provides functions for obtaining handles to

					classes describing the group and sub-group that an item belongs to. These

					classes provide an alternative interface for querying an item’s index in an

					ND-range. We strongly recommend writing kernels using these classes

					instead of relying on nd_itemdirectly: using the groupand sub_group

					classes is often cleaner, conveys intent more clearly, and is more aligned

					with the future direction of DPC++.

					template <int Dimensions = 1>

					class nd_item {

					public:

					// Return the index of this item in the kernel's execution range

					id<Dimensions> get_global_id() const;

					size_t get_global_id(int dimension) const;

					size_t get_global_linear_id() const;

					// Return the execution range of the kernel executed by this item

					range<Dimensions> get_global_range() const;

					size_t get_global_range(int dimension) const;

					// Return the index of this item within its parent work-group

					id<Dimensions> get_local_id() const;

					size_t get_local_id(int dimension) const;

					size_t get_local_linear_id() const;

					// Return the execution range of this item's parent work-group

					range<Dimensions> get_local_range() const;

					size_t get_local_range(int dimension) const;

					// Return a handle to the work-group

					// or sub-group containing this item

					group<Dimensions> get_group() const;

					sub_group get_sub_group() const;

					};

					Figure 4-16. Simplified definition of the nd_item class

					115

					[bookmark: 140_0]
					[bookmark: 140_1]
				

			

		

		
			
				
					Chapter 4 expressing parallelism

					The group Class

					The groupclass encapsulates all functionality related to work-groups, and

					a simplified definition is shown in Figure 4-17.

					template <int Dimensions = 1>

					class group {

					public:

					// Return the index of this group in the kernel's execution range

					id<Dimensions> get_id() const;

					size_t get_id(int dimension) const;

					size_t get_linear_id() const;

					// Return the number of groups in the kernel's execution range

					range<Dimensions> get_group_range() const;

					size_t get_group_range(int dimension) const;

					// Return the number of work-items in this group

					range<Dimensions> get_local_range() const;

					size_t get_local_range(int dimension) const;

					};

					Figure 4-17. Simplified definition of the group class

					Many of the functions that the groupclass provides each have

					equivalent functions in the nd_itemclass: for example, calling group.get_

					id()is equivalent to calling item.get_group_id(),and calling group.

					get_local_range()is equivalent to calling item.get_local_range().

					If we’re not using any of the work-group functions exposed by the class,

					should we still use it? Wouldn’t it be simpler to use the functions in

					nd_itemdirectly, instead of creating an intermediate groupobject? There

					is a tradeoff here: using grouprequires us to write slightly more code, but

					that code may be easier to read. For example, consider the code snippet in

					Figure 4-18: it is clear that bodyexpects to be called by all work-items in the

					group, and it is clear that the rangereturned by get_local_range()in the

					body of the parallel_foris the range of the group. The same code could

					very easily be written using only nd_item, but it would likely be harder for

					readers to follow.

					116

					www. dbooks . or g

					[bookmark: 141_0]
					[bookmark: 141_1]
				

			

		

		
			
				
					Chapter 4 expressing parallelism

					void body(group& g);

					h.parallel_for(nd_range{global, local}, [=](nd_item<1> it) {

					group<1> g = it.get_group();

					range<1> r = g.get_local_range();

					...

					body(g);

					});

					Figure 4-18. Using the group class to improve readability

					The sub_group Class

					The sub_groupclass encapsulates all functionality related to sub-

					groups, and a simplified definition is shown in Figure 4-19. Unlike with

					work-groups, the sub_groupclass is the only way to access sub-group

					functionality; none of its functions are duplicated in nd_item. The queries

					in the sub_groupclass are all interpreted relative to the calling work-item:

					for example, get_local_id()returns the local index of the calling work-

					item within its sub-group.

					class sub_group {

					public:

					// Return the index of the sub-group

					id<1> get_group_id() const;

					// Return the number of sub-groups in this item's parent work-group

					range<1> get_group_range() const;

					// Return the index of the work-item in this sub-group

					id<1> get_local_id() const;

					// Return the number of work-items in this sub-group

					range<1> get_local_range() const;

					// Return the maximum number of work-items in any

					// sub-group in this item's parent work-group

					range<1> get_max_local_range() const;

					};

					Figure 4-19. Simplified definition of the sub_group class

					117

					[bookmark: 142_0]
					[bookmark: 142_1]
					[bookmark: 142_2]
				

			

		

		
			
				
					Chapter 4 expressing parallelism

					Note that there are separate functions for querying the number of

					work-items in the current sub-group and the maximum number of work-

					items in any sub-group within the work-group. Whether and how these

					differ depends on exactly how sub-groups are implemented for a specific

					device, but the intent is to reflect any differences between the sub-group

					size targeted by the compiler and the runtime sub-group size. For example,

					very small work-groups may contain fewer work-items than the compile-

					time sub-group size, or sub-groups of different sizes may be used to handle

					work-groups that are not divisible by the sub-group size.

					Hierarchical Parallel Kernels

					Hierarchical data-parallel kernels offer an experimental alternative syntax

					for expressing kernels in terms of work-groups and work-items, where

					each level of the hierarchy is programmed using a nested invocation of

					the parallel_forfunction. This top-down programming style is intended

					to be similar to writing parallel loops and may feel more familiar than the

					bottom-up programming style used by the other two kernel forms.

					One complexity of hierarchical kernels is that each nested invocation

					of parallel_forcreates a separate SPMD environment; each scope

					defines a new “program” that should be executed by all parallel workers

					associated with that scope. This complexity requires compilers to perform

					additional analysis and can complicate code generation for some devices;

					compiler technology for hierarchical parallel kernels on some platforms is

					still relatively immature, and performance will be closely tied to the quality

					of a particular compiler implementation.

					Since the relationship between a hierarchical data-parallel kernel

					and the code generated for a specific device is compiler-dependent,

					hierarchical kernels should be considered a more descriptive construct

					than explicit ND-range kernels. However, since hierarchical kernels retain

					the ability to control the mapping of work to work-items and work-groups,

					they remain more prescriptive than basic kernels.

					118

					www. dbooks . or g

					[bookmark: 143_0]
					[bookmark: 143_1]
				

			

		

		
			
				
					Chapter 4 expressing parallelism

					Understanding Hierarchical Data-Parallel

					Kernels

					The underlying execution model of hierarchical data-parallel kernels is the

					same as the execution model of explicit ND-range data-parallel kernels.

					Work-items, sub-groups, and work-groups have identical semantics and

					execution guarantees.

					However, the different scopes of a hierarchical kernel are mapped by

					the compiler to different execution resources: the outer scope is executed

					once per work-group (as if executed by a single work-item), while the inner

					scope is executed in parallel by work-items within the work-group. The

					different scopes also control where in memory different variables should

					be allocated, and the opening and closing of scopes imply work-group

					barriers (to enforce memory consistency).

					Although the work-items in a work-group are still divided into

					sub-groups, the sub_groupclass cannot currently be accessed from a

					hierarchical parallel kernel; incorporating the concept of sub-groups into

					SYCL hierarchical parallelism requires more significant changes than

					introducing a new class, and work in this area is ongoing.

					Writing Hierarchical Data-Parallel Kernels

					In hierarchical kernels, the parallel_forfunction is replaced by the

					parallel_for_work_groupand parallel_for_work_itemfunctions,

					which correspond to work-group and work-item parallelism, respectively.

					Any code in a parallel_for_work_groupscope is executed only once per

					work-group, and variables allocated in a parallel_for_work_groupscope

					are visible to all work-items (i.e., they are allocated in work-group local

					memory). Any code in a parallel_for_work_itemscope is executed in

					parallel by the work-items of the work-group, and variables allocated in a

					parallel_for_work_itemscope are visible to a single work-item (i.e., they

					are allocated in work-item private memory).

					119

					[bookmark: 144_0]
					[bookmark: 144_1]
					[bookmark: 144_2]
				

			

		

		
			
				
					Chapter 4 expressing parallelism

					As shown in Figure 4-20, kernels expressed using hierarchical

					parallelism are very similar to ND-range kernels. We should therefore

					view hierarchical parallelism primarily as a productivity feature; it doesn’t

					expose any functionality that isn’t already exposed via ND-range kernels,

					but it may improve the readability of our code and/or reduce the amount

					of code that we must write.

					range num_groups{N / B, N / B}; // N is a multiple of B

					range group_size{B, B};

					h.parallel_for_work_group(num_groups, group_size, [=](group<2> grp) {

					int jb = grp.get_id(0);

					int ib = grp.get_id(1);

					grp.parallel_for_work_item([&](h_item<2> it) {

					int j = jb * B + it.get_local_id(0);

					int i = ib * B + it.get_local_id(1);

					for (int k = 0; k < N; ++k)

					c[j][i] += a[j][k] * b[k][i];

					});

					});

					Figure 4-20. Expressing a naïve matrix multiplication kernel with

					hierarchical parallelism

					It is important to note that the ranges passed to the parallel_for_

					work_groupfunction specify the number of groups and an optional group

					size, not the total number of work-items and group size as was the case for

					ND-range parallel_for. The kernel function accepts an instance of the

					groupclass, reflecting that the outer scope is associated with work-groups

					rather than individual work-items.

					parallel_for_work_itemis a member function of the groupclass

					and can only be called inside of a parallel_for_work_groupscope. In

					its simplest form, its only argument is a function accepting an instance of

					the h_itemclass, and the number of times that the function is executed is

					equal to the number of work-items requested per work-group; the function

					is executed once per physical work-item. An additional productivity feature

					of parallel_for_work_itemis its ability to support a logical range, which

					120

					www. dbooks . or g

					[bookmark: 145_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 4 expressing parallelism

					is passed as an additional argument to the function. When a logical range

					is specified, each physical work-item executes zero or more instances of

					the function, and the logical items of the logical range are assigned round-

					robin to physical work-items.

					Figure 4-21 shows an example of the mapping between a logical

					range consisting of 11 logical work-items and an underlying physical

					range consisting of 8 physical work-items. The first three work-items

					are assigned two instances of the function, and all other work-items are

					assigned only one.

					Figure 4-21. Mapping a logical range of size 11 to a physical range of

					size 8

					As shown in Figure 4-22, combining the optional group size of

					parallel_for_work_groupwith the logical range of parallel_for_work_

					itemgives an implementation the freedom to choose work-group sizes

					without sacrificing our ability to conveniently describe the execution range

					using nested parallel constructs. Note that the amount of work performed

					per group remains the same as in Figure 4-20, but that the amount of work

					has now been separated from the physical work-group size.

					121

					[bookmark: 146_0]
				

			

		

		
			
				
					Chapter 4 expressing parallelism

					range num_groups{N / B, N / B}; // N is a multiple of B

					range group_size{B, B};

					h.parallel_for_work_group(num_groups, [=](group<2> grp) {

					int jb = grp.get_id(0);

					int ib = grp.get_id(1);

					grp.parallel_for_work_item(group_size, [&](h_item<2> it) {

					int j = jb * B + it.get_logical_local_id(0);

					int i = ib * B + it.get_logical_local_id(1);

					for (int k = 0; k < N; ++k)

					c[j][i] += a[j][k] * b[k][i];

					});

					});

					Figure 4-22. Expressing a naïve matrix multiplication kernel with

					hierarchical parallelism and a logical range

					Details of Hierarchical Data-Parallel Kernels

					Hierarchical data-parallel kernels reuse the groupclass from ND-range

					data-parallel kernels, but replace nd_itemwith h_item. A new private_

					memoryclass is introduced to provide tighter control over allocations in

					parallel_for_work_groupscope.

					The h_item Class

					An h_itemis a variant of itemthat is only available within a parallel_

					for_work_itemscope. As shown in Figure 4-23, it provides a similar

					interface to an nd_item, with one notable difference: the item’s index can

					be queried relative to the physical execution range of a work-group (with

					get_physical_local_id()) or the logical execution range of a parallel_

					for_work_itemconstruct (with get_logical_local_id()).

					122

					www. dbooks . or g

					[bookmark: 147_0]
					[bookmark: 147_1]
					[bookmark: 147_2]
				

			

		

		
			
				
					Chapter 4 expressing parallelism

					template <int Dimensions>

					class h_item {

					public:

					// Return item's index in the kernel's execution range

					id<Dimensions> get_global_id() const;

					range<Dimensions> get_global_range() const;

					// Return the index in the work-group's execution range

					id<Dimensions> get_logical_local_id() const;

					range<Dimensions> get_logical_local_range() const;

					// Return the index in the logical execution range of the parallel_for

					id<Dimensions> get_physical_local_id() const;

					range<Dimensions> get_physical_local_range() const;

					};

					Figure 4-23. Simplified definition of the h_item class

					The private_memory Class

					The private_memoryclass provides a mechanism to declare variables that

					are private to each work-item, but which can be accessed across multiple

					parallel_for_work_itemconstructs nested within the same parallel_

					for_work_groupscope.

					This class is necessary because of how variables declared in different

					hierarchical parallelism scopes behave: variables declared at the outer scope

					are only private if the compiler can prove it is safe to make them so, and

					variables declared at the inner scope are private to a logical work-item rather

					than a physical one. It is impossible using scope alone for us to convey that a

					variable is intended to be private for each physical work-item.

					To see why this is a problem, let’s refer back to our matrix

					multiplication kernels in Figure 4-22. The iband jbvariables are declared

					at parallel_for_work_groupscope and by default should be allocated

					in work-group local memory! There’s a good chance that an optimizing

					compiler would not make this mistake, because the variables are read-only

					and their value is simple enough to compute redundantly on every work-

					item, but the language makes no such guarantees. If we want to be certain

					123

					[bookmark: 148_0]
					[bookmark: 148_1]
				

			

		

		
			
				
					Chapter 4 expressing parallelism

					that a variable is declared in work-item private memory, we must wrap the

					variable declaration in an instance of the private_memoryclass, shown in

					Figure 4-24.

					template <typename T, int Dimensions = 1>

					class private_memory {

					public:

					// Construct a private variable for each work-item in the group

					private_memory(const group<Dimensions>&);

					// Return the private variable associated with this work-item

					T& operator(const h_item<Dimensions>&);

					};

					Figure 4-24. Simplified definition of the private_memory class

					For example, if we were to rewrite our matrix multiplication kernel

					using the private_memoryclass, we would define the variables as private_

					memory<int> ib(grp), and each access to these variables would become

					ib[item]. In this case, using the private_memoryclass results in code that

					is harder to read, and declaring the values at parallel_for_work_item

					scope is clearer.

					Our recommendation is to only use the private_memoryclass if

					a work-item private variable is used across multiple parallel_for_

					work_itemscopes within the same parallel_for_work_group, it is too

					expensive to compute repeatedly, or its computation has side effects that

					prevent it from being computed redundantly. Otherwise, we should rely

					on the abilities of modern optimizing compilers by default and declare

					variables at parallel_for_work_itemscope only when their analysis fails

					(remembering to also report the issue to the compiler vendor).

					Mapping Computation to Work-Items

					Most of the code examples so far have assumed that each instance of a

					kernel function corresponds to a single operation on a single piece of data.

					This is a simple way to write kernels, but such a one-to-one mapping is not

					124

					www. dbooks . or g

					[bookmark: 149_0]
					[bookmark: 149_1]
					[bookmark: 149_2]
				

			

		

		
			
				
					Chapter 4 expressing parallelism

					dictated by DPC++ or any of the kernel forms—we always have complete

					control over the assignment of data (and computation) to individual work-

					items, and making this assignment parameterizable can be a good way to

					improve performance portability.

					One-to-One Mapping

					When we write kernels such that there is a one-to-one mapping of work

					to work-items, those kernels must always be launched with a rangeor

					nd_rangewith a size exactly matching the amount of work that needs to

					be done. This is the most obvious way to write kernels, and in many cases,

					it works very well—we can trust an implementation to map work-items to

					hardware efficiently.

					However, when tuning for performance on a specific combination of

					system and implementation, it may be necessary to pay closer attention

					to low-level scheduling behaviors. The scheduling of work-groups to

					compute resources is implementation-defined and could potentially be

					dynamic (i.e., when a compute resource completes one work-group, the

					next work-group it executes may come from a shared queue). The impact

					of dynamic scheduling on performance is not fixed, and its significance

					depends upon factors including the execution time of each instance of the

					kernel function and whether the scheduling is implemented in software

					(e.g., on a CPU) or hardware (e.g., on a GPU).

					Many-to-One Mapping

					The alternative is to write kernels with a many-to-one mapping of work

					to work-items. The meaning of the range changes subtly in this case: the

					range no longer describes the amount of work to be done, but rather

					the number of workers to use. By changing the number of workers and

					the amount of work assigned to each worker, we can fine-tune work

					distribution to maximize performance.

					125

					[bookmark: 150_0]
					[bookmark: 150_1]
				

			

		

		
			
				
					Chapter 4 expressing parallelism

					Writing a kernel of this form requires two changes:

					1. The kernel must accept a parameter describing the

					total amount of work.

					2. The kernel must contain a loop assigning work to

					work-items.

					A simple example of such a kernel is given in Figure 4-25. Note that

					the loop inside the kernel has a slightly unusual form—the starting index

					is the work-item’s index in the global range, and the stride is the total

					number of work-items. This round-robin scheduling of data to work-items

					ensures that all Niterations of the loop will be executed by a work-item,

					but also that linear work-items access contiguous memory locations (to

					improve cache locality and vectorization behavior). Work can be similarly

					distributed across groups or the work-items in individual groups to further

					improve locality.

					size_t N = ...; // amount of work

					size_t W = ...; // number of workers

					h.parallel_for(range{W}, [=](item<1> it) {

					for (int i = it.get_id()[0]; i < N; i += it.get_range()[0]) {

					output[i] = function(input[i]);

					}

					});

					Figure 4-25. Kernel with separate data and execution ranges

					These work distribution patterns are common, and they can be

					expressed very succinctly when using hierarchical parallelism with a

					logical range. We expect that future versions of DPC++ will introduce

					syntactic sugar to simplify the expression of work distribution in ND-range

					kernels.

					126

					www. dbooks . or g

					[bookmark: 151_0]
				

			

		

		
			
				
					Chapter 4 expressing parallelism

					Choosing a Kernel Form

					Choosing between the different kernel forms is largely a matter of personal

					preference and heavily influenced by prior experience with other parallel

					programming models and languages.

					The other main reason to choose a specific kernel form is that it is the only

					form to expose certain functionality required by a kernel. Unfortunately, it can

					be difficult to identify which functionality will be required before development

					begins—especially while we are still unfamiliar with the different kernel forms

					and their interaction with various classes.

					We have constructed two guides based on our own experience in order

					to help us navigate this complex space. These guides should be considered

					rules of thumb and are definitely not intended to replace our own

					experimentation—the best way to choose between the different kernel forms

					will always be to spend some time writing in each of them, in order to learn

					which form is the best fit for our application and development style.

					The first guide is the flowchart in Figure 4-26, which selects a kernel

					form based on

					1. Whether we have previous experience with parallel

					programming

					2. Whether we are writing a new code from scratch or

					are porting an existing parallel program written in a

					different language

					3. Whether our kernel is embarrassingly parallel,

					already contains nested parallelism, or reuses data

					between different instances of the kernel function

					4. Whether we are writing a new kernel in SYCL to

					maximize performance or to improve the portability

					of our code or because it provides a more productive

					means of expressing parallelism than lower-level

					languages

					127

					[bookmark: 152_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 4 expressing parallelism

					Figure 4-26. Helping choose the right form for our kernel

					The second guide is the table in Figure 4-27, which summarizes the

					functionalities that are exposed to each of the kernel forms. It is important

					to note that this table reflects the state of DPC++ at the time of publication

					for this book and that the features available to each kernel form should

					be expected to change as the language evolves. However, we expect

					the basic trend to remain the same: basic data-parallel kernels will not

					expose locality-aware features, explicit ND-range kernels will expose all

					performance-enabling features, and hierarchical kernels will lag behind

					explicit ND-range kernels in exposing features, but their expression of

					those features will use higher-level abstractions.

					128

					www. dbooks . or g

					[bookmark: 153_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 4 expressing parallelism

					Figure 4-27. Features available to each kernel form

					Summary

					This chapter introduced the basics of expressing parallelism in DPC++ and

					discussed the strengths and weaknesses of each approach to writing data-

					parallel kernels.

					DPC++ and SYCL provide support for many forms of parallelism, and

					we hope that we have provided enough information to prepare readers to

					dive in and start coding!

					We have only scratched the surface, and a deeper dive into many of

					the concepts and classes introduced in this chapter is forthcoming: the

					usage of local memory, barriers, and communication routines will be

					covered in Chapter 9; different ways of defining kernels besides using

					lambda expressions will be discussed in Chapter 10; detailed mappings

					of the ND-range execution model to specific hardware will be explored

					in Chapters 15, 16, and 17; and best practices for expressing common

					parallel patterns using DPC++ will be presented in Chapter 14.

					129

					[bookmark: 154_0]
					[bookmark: 154_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 4 expressing parallelism

					Open Access This chapter is licensed under the terms

					of the Creative Commons Attribution 4.0 International

					License (http://creativecommons.org/licenses/by/4.0/), which permits

					use, sharing, adaptation, distribution and reproduction in any medium or

					format, as long as you give appropriate credit to the original author(s) and

					the source, provide a link to the Creative Commons license and indicate if

					changes were made.

					The images or other third party material in this chapter are included

					in the chapter’s Creative Commons license, unless indicated otherwise

					in a credit line to the material. If material is not included in the chapter’s

					Creative Commons license and your intended use is not permitted by

					statutory regulation or exceeds the permitted use, you will need to obtain

					permission directly from the copyright holder.

					130

					www. dbooks . or g

				

			

		

		
			
				
					
				
			

			
				
					CHAPTER 5

					Error Handling

					Agatha Christie wrote in 1969 that “human error is nothing to what a

					computer can do if it tries.” It is no mystery that we, as programmers, get

					to clean up the mess. The mechanisms for error handling could catch

					programmer errors that others may make. Since we do not plan on making

					mistakes ourselves, we can focus on using error handling to handle

					conditions that may occur in the real world from other causes.

					Detecting and dealing with unexpected conditions and errors can be

					helpful during application development (think: the other programmer

					who works on the project who does make mistakes), but more importantly

					play a critical role in stable and safe production applications and libraries.

					© Intel Corporation 2021

					J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-5574-2_5

					131

					[bookmark: 156_0]
					[bookmark: 156_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 5 error handlIng

					We devote this chapter to describing the error handling mechanisms

					available in SYCL so that we can understand what our options are and how

					to architect applications if we care about detecting and managing errors.

					This chapter overviews synchronous and asynchronous errors in SYCL,

					describes the behavior of an application if we do nothing in our code to

					handle errors, and dives into the SYCL-specific mechanism that allows us

					to handle asynchronous errors.

					Safety First

					A core aspect of C++ error handling is that if we do nothing to handle an

					error that has been detected (thrown), then the application will terminate

					and indicate that something went wrong. This behavior allows us to write

					applications without focusing on error management and still be confident

					that errors will somehow be signaled to a developer or user. We’re not

					suggesting that we should ignore error handling, of course! Production

					applications should be written with error management as a core part of

					the architecture, but applications often start development without such

					a focus. C++ aims to make code which doesn’t handle errors still able to

					observe errors, even when they are not dealt with explicitly.

					Since SYCL is Data Parallel C++, the same philosophy holds: if we

					do nothing in our code to manage errors and an error is detected, an

					abnormal termination of the program will occur to let us know that

					something bad happened. Production applications should of course

					consider error management as a core part of the software architecture, not

					only reporting but often also recovering from error conditions.

					If we don’t add any error management code and an error occurs, we

					will still see an abnormal program termination which is an indication

					to dig deeper.

					132

					www. dbooks . or g

					[bookmark: 157_0]
				

			

		

		
			
				
					Chapter 5 error handlIng

					Types of Errors

					C++ provides a framework for notification and handling of errors through

					its exception mechanism. Heterogeneous programming requires an

					additional level of error management beyond this, because some errors

					occur on a device or when trying to launch work on a device. These errors

					are typically decoupled in time from the host program’s execution, and

					as such they don’t integrate cleanly with classic C++ exception handling

					mechanisms. To solve this, there are additional mechanisms to make

					asynchronous errors as manageable and controllable as regular C++

					exceptions.

					Figure 5-1 shows two components of a typical application: (1) the

					host code that runs sequentially and submits work to the task graph

					for future execution and (2) the task graph which runs asynchronously

					from the host program and executes kernels or other actions on devices

					when the necessary dependences are met. The example shows a

					parallel_foras the operation that executes asynchronously as part of

					the task graph, but other operations are possible as well as discussed in

					Chapters 3, 4, and 8.

					133

					[bookmark: 158_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 5 error handlIng

					#include <CL/sycl.hpp>

					#include <iostream>

					using namespace sycl;

					int main() {

					constexpr int size=16;

					buffer<int> B { range{ size } };

					// Create queue on any available device

					queue Q;

					Q.submit([&](handler& h) {

					accessor A{B, h};

					h.parallel_for(size , [=](auto& idx) {

					A[idx] = idx;

					});

					});

					// Obtain access to buffer on the host

					// Will wait for device kernel to execute to generate data

					host_accessor A{B};

					for (int i = 0; i < size; i++)

					std::cout << "data[" << i << "] = " << A[i] << "\n";

					return 0;

					}

					Figure 5-1. Separation of host program and task graph executions

					The distinction between the left and right (host and task graph)

					sides of Figure 5-1 is the key to understanding the differences between

					synchronous and asynchronous errors.

					Synchronous errors occur when an error condition can be detected

					as the host program executes an operation, such as an API call or object

					constructor. They can be detected before an instruction on the left side of

					the figure completes, and the error can be thrown by the operation that

					caused the error immediately. We can wrap specific instructions on the

					left side of the diagram with a try-catchconstruct, expecting that errors

					occurring as a result of operations within the trywill be detected before

					the try block ends (and therefore caught). The C++ exception mechanism

					is designed to handle exactly these types of errors.

					134

					www. dbooks . or g

					[bookmark: 159_0]
				

			

		

		
			
				
					Chapter 5 error handlIng

					Alternatively, asynchronous errors occur as part of the right side of

					Figure 5-1, where an error is only detected when an operation in the task

					graph is executed. By the time that an asynchronous error is detected

					as part of task graph execution, the host program has typically already

					moved on with its execution, so there is no code to wrap with a try-

					catchconstruct to catch these errors. There is instead an asynchronous

					exception handling framework to handle these errors that occur at

					seemingly random times relative to host program execution.

					Let’s Create Some Errors!

					As examples for the remainder of this chapter and to allow us to

					experiment, we’ll create both synchronous and asynchronous errors in the

					following sections.

					Synchronous Error

					#include <CL/sycl.hpp>

					using namespace sycl;

					int main() {

					buffer<int> B{ range{16} };

					// ERROR: Create sub-buffer larger than size of parent buffer

					// An exception is thrown from within the buffer constructor

					buffer<int> B2(B, id{8}, range{16});

					return 0;

					}

					Example output:

					terminate called after throwing an instance of

					'cl::sycl::invalid_object_error'

					what(): Requested sub-buffer size exceeds the size of the parent buffer

					-30 (CL_INVALID_VALUE)

					Figure 5-2. Creating a synchronous error

					135

					[bookmark: 160_0]
					[bookmark: 160_1]
					[bookmark: 160_2]
					[bookmark: 160_3]
				

			

		

		
			
				
					Chapter 5 error handlIng

					In Figure 5-2, a sub-buffer is created from a buffer but with an illegal size

					(larger than the original buffer). The constructor of the sub-buffer detects

					this error and throws an exception before the constructor’s execution

					completes. This is a synchronous error because it occurs as part of

					(synchronously with) the host program’s execution. The error is detectable

					before the constructor returns, so the error may be handled immediately at

					its point of origin or detection in the host program.

					Our code example doesn’t do anything to catch and handle C++

					exceptions, so the default C++ uncaught exception handler calls

					std::terminatefor us, signaling that something went wrong.

					Asynchronous Error

					Generating an asynchronous error is a bit trickier because

					implementations work hard to detect and report errors synchronously

					whenever possible. Synchronous errors are easier to debug because they

					occur at a specific point of origin in the host program, so are preferred

					whenever possible. One way to generate an asynchronous error for our

					demonstration purpose, though, is to add a fallback/secondary queue to

					our command group submission and to discard synchronous exceptions

					that also happen to be thrown. Figure 5-3 shows such code which

					invokes our handle_async_errorfunction to allow us to experiment.

					Asynchronous errors can occur and be reported without a secondary/

					fallback queue, so note that the secondary queue is only part of the

					example and in no way a requirement for asynchronous errors.

					136

					www. dbooks . or g

					[bookmark: 161_0]
					[bookmark: 161_1]
				

			

		

		
			
				
					Chapter 5 error handlIng

					#include <CL/sycl.hpp>

					using namespace sycl;

					// Our simple asynchronous handler function

					auto handle_async_error = [](exception_list elist) {

					for (auto &e : elist) {

					try{ std::rethrow_exception(e); }

					catch (sycl::exception& e) {

					std::cout << "ASYNC EXCEPTION!!\n";

					std::cout << e.what() << "\n";

					}

					}

					};

					void say_device (const queue& Q) {

					std::cout << "Device : "

					<< Q.get_device().get_info<info::device::name>() << "\n";

					}

					int main() {

					queue Q1{ gpu_selector{}, handle_async_error };

					queue Q2{ cpu_selector{}, handle_async_error };

					say_device(Q1);

					say_device(Q2);

					try {

					Q1.submit([&] (handler &h){

					// Empty command group is illegal and generates an error

					},

					Q2); // Secondary/backup queue!

					} catch (...) {} // Discard regular C++ exceptions for this example

					return 0;

					}

					Example output:

					Device : Intel(R) Gen9 HD Graphics NEO

					Device : Intel(R) Xeon(R) E-2176G CPU @ 3.70GHz

					ASYNC EXCEPTION!!

					Command group submitted without a kernel or a explicit memory operation. -59

					(CL_INVALID_OPERATION)

					Figure 5-3. Creating an asynchronous error

					137

					[bookmark: 162_0]
				

			

		

		
			
				
					Chapter 5 error handlIng

					Application Error Handling Strategy

					The C++ exception features are designed to cleanly separate the point

					in a program where an error is detected from the point where it may

					be handled, and this concept fits very well with both synchronous and

					asynchronous errors in SYCL. Through the throwand catchmechanisms,

					a hierarchy of handlers can be defined which can be important in

					production applications.

					Building an application that can handle errors in a consistent

					and reliable way requires a strategy up front and a resulting software

					architecture built for error management. C++ provides flexible tools to

					implement many alternative strategies, but such architecture is beyond the

					scope of this chapter. There are many books and other references devoted

					to this topic, so we encourage looking to them for full coverage of C++ error

					management strategies.

					This said, error detection and reporting doesn’t always need to

					be production-scale. Errors in a program can be reliably detected and

					reported through minimal code if the goal is simply to detect errors

					during execution and to report them (but not necessarily to recover from

					them). The following sections cover first what happens if we ignore error

					handling and do nothing (the default behavior isn’t all that bad!), followed

					by recommended error reporting that is simple to implement in basic

					applications.

					Ignoring Error Handling

					C++ and SYCL are designed to tell us that something went wrong even

					when we don’t handle errors explicitly. The default result of unhandled

					synchronous or asynchronous errors is abnormal program termination

					which an operating system should tell us about. The following two

					examples mimic the behavior that will occur if we do not handle a

					synchronous and an asynchronous error, respectively.

					138

					www. dbooks . or g

					[bookmark: 163_0]
					[bookmark: 163_1]
				

			

		

		
			
				
					Chapter 5 error handlIng

					Figure 5-4 shows the result of an unhandled C++ exception, which

					could be an unhandled SYCL synchronous error, for example. We can use

					this code to test what a particular operating system will report in such a

					case.

					Figure 5-5 shows example output from std::terminatebeing called,

					which will be the result of an unhandled SYCL asynchronous error in

					our application. We can use this code to test what a particular operating

					system will report in such a case.

					Although we probably should handle errors in our programs, since

					uncaught errors will be caught and the program terminated, we do not

					need to worry about a program silently failing!

					#include <iostream>

					class something_went_wrong {};

					int main() {

					std::cout << "Hello\n";

					throw(something_went_wrong{});

					}

					Example output in Linux:

					Hello

					terminate called after throwing an instance of 'something_went_wrong'

					Aborted (core dumped)

					Figure 5-4. Unhandled exception in C++

					139

					[bookmark: 164_0]
				

			

		

		
			
				
					Chapter 5 error handlIng

					#include <iostream>

					int main() {

					std::cout << "Hello\n";

					std::terminate();

					}

					Example output in Linux:

					Hello

					terminate called without an active exception

					Aborted (core dumped)

					Figure 5-5. std::terminate is called when a SYCL asynchronous

					exception isn’t handled

					Synchronous Error Handling

					We keep this section very short because SYCL synchronous errors are just

					C++ exceptions. Most of the additional error mechanisms added in SYCL

					relate to asynchronous errors which we cover in the next section, but

					synchronous errors are important because implementations try to detect

					and report as many errors synchronously as possible, since they are easier

					to reason about and handle.

					Synchronous errors defined by SYCL are a derived class from

					std::exceptionof type sycl::exception, which allows us to catch the

					SYCL errors specifically though a try-catchstructure such as what we see

					in Figure 5-6.

					try{

					// Do some SYCL work

					} catch (sycl::exception &e) {

					// Do something to output or handle the exceptinon

					std::cout << "Caught sync SYCL exception: " << e.what() << "\n";

					return 1;

					}

					Figure 5-6. Pattern to catch sycl::exception specifically

					140

					www. dbooks . or g

					[bookmark: 165_0]
					[bookmark: 165_1]
					[bookmark: 165_2]
					[bookmark: 165_3]
				

			

		

		
			
				
					Chapter 5 error handlIng

					On top of the C++ error handling mechanisms, SYCL adds a

					sycl::exceptiontype for the exceptions thrown by the runtime.

					Everything else is standard C++ exception handling, so will be familiar to

					most developers.

					A slightly more complete example is provided in Figure 5-7, where

					additional classes of exception are handled, as well as the program being

					ended by returning from main().

					try{

					buffer<int> B{ range{16} };

					// ERROR: Create sub-buffer larger than size of parent buffer

					// An exception is thrown from within the buffer constructor

					buffer<int> B2(B, id{8}, range{16});

					} catch (sycl::exception &e) {

					// Do something to output or handle the exception

					std::cout << "Caught sync SYCL exception: " << e.what() << "\n";

					return 1;

					} catch (std::exception &e) {

					std::cout << "Caught std exception: " << e.what() << "\n";

					return 2;

					} catch (...) {

					std::cout << "Caught unknown exception\n";

					return 3;

					}

					return 0;

					Example output:

					Caught sync SYCL exception: Requested sub-buffer size exceeds the size of

					the parent buffer -30 (CL_INVALID_VALUE)

					Figure 5-7. Pattern to catch exceptions from a block of code

					Asynchronous Error Handling

					Asynchronous errors are detected by the SYCL runtime (or an underlying

					backend), and the errors occur independently of execution of commands

					in the host program. The errors are stored in lists internal to the SYCL

					141

					[bookmark: 166_0]
					[bookmark: 166_1]
					[bookmark: 166_2]
				

			

		

		
			
				
					Chapter 5 error handlIng

					runtime and only released for processing at specific points that the

					programmer can control. There are two topics that we need to discuss to

					cover handling of asynchronous errors:

					1. The asynchronous handler that is invoked when

					there are outstanding asynchronous errors to

					process

					2. When the asynchronous handler is invoked

					The Asynchronous Handler

					The asynchronous handler is a function that the application defines, which

					is registered with SYCL contexts and/or queues. At the times defined by the

					next section, if there are any unprocessed asynchronous exceptions that

					are available to be handled, then the asynchronous handler is invoked by

					the SYCL runtime and passed a list of these exceptions.

					The asynchronous handler is passed to a context or queue constructor

					as a std::functionand can be defined in ways such as a regular function,

					lambda, or functor, depending on our preference. The handler must accept

					a sycl::exception_listargument, such as in the example handler shown

					in Figure 5-8.

					// Our simple asynchronous handler function

					auto handle_async_error = [](exception_list elist) {

					for (auto &e : elist) {

					try{ std::rethrow_exception(e); }

					catch (sycl::exception& e) {

					std::cout << "ASYNC EXCEPTION!!\n";

					std::cout << e.what() << "\n";

					}

					}

					};

					Figure 5-8. Example asynchronous handler implementation defined

					as a lambda

					142

					www. dbooks . or g

					[bookmark: 167_0]
					[bookmark: 167_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 5 error handlIng

					In Figure 5-8, the std::rethrow_exceptionfollowed by catch of a

					specific exception type provides filtering of the type of exception, in this

					case to the only sycl::exception. We can also use alternative filtering

					approaches in C++ or just choose to handle all exceptions regardless of

					the type.

					The handler is associated with a queue or context (low-level detail

					covered more in Chapter 6) at construction time. For example, to register

					the handler defined in Figure 5-8 with a queue that we are creating, we

					could write

					queue my_queue{ gpu_selector{}, handle_async_error };

					Likewise, to register the handler defined in Figure 5-8 with a context

					that we are creating, we could write

					context my_context{ handle_async_error };

					Most applications do not need contexts to be explicitly created or

					managed (they are created behind the scenes for us automatically), so

					if an asynchronous handler is going to be used, most developers should

					associate such handlers with queues that are being constructed for specific

					devices (and not explicit contexts).

					In defining asynchronous handlers, most developers should define

					them on queues unless already explicitly managing contexts for other

					reasons.

					If an asynchronous handler is not defined for a queue or the queue’s

					parent context and an asynchronous error occurs on that queue (or in the

					context) that must be processed, then the default asynchronous handler

					is invoked. The default handler operates as if it was coded as shown in

					Figure 5-9.

					143

				

			

		

		
			
				
					Chapter 5 error handlIng

					// Our simple asynchronous handler function

					auto handle_async_error = [](exception_list elist) {

					for (auto &e : elist) {

					try{ std::rethrow_exception(e); }

					catch (sycl::exception& e) {

					// Print information about the asynchronous exception

					}

					}

					// Terminate abnormally to make clear to user

					// that something unhandled happened

					std::terminate();

					};

					Figure 5-9. Example of how the default asynchronous handler behaves

					The default handler should display some information to the user on

					any errors in the exception list and then will terminate the application

					abnormally, which should also cause the operating system to report that

					termination was abnormal.

					What we put within an asynchronous handler is up to us. It can range

					from logging of an error to application termination to recovery of the

					error condition so that an application can continue executing normally.

					The common case is to report any details of the error available by calling

					sycl::exception::what(), followed by termination of the application.

					Although it’s up to us to decide what an asynchronous handler does

					internally, a common mistake is to print an error message (that may be

					missed in the noise of other messages from the program), followed by

					completion of the handler function. Unless we have error management

					principles in place that allow us to recover known program state and

					to be confident that it’s safe to continue execution, we should consider

					terminating the application within our asynchronous handler function(s).

					This reduces the chance that incorrect results will appear from a program

					where an error was detected, but where the application was inadvertently

					allowed to continue with execution regardless. In many programs,

					abnormal termination is the preferred result once we have experienced

					asynchronous exceptions.

					144

					www. dbooks . or g

					[bookmark: 169_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 5 error handlIng

					Consider terminating applications within an asynchronous handler,

					after outputting information about the error, if comprehensive error

					recovery and management mechanisms are not in place.

					Invocation of the Handler

					The asynchronous handler is called by the runtime at specific times.

					Errors aren’t reported immediately as they occur because management

					of errors and safe application programming (particularly multithreaded)

					would become more difficult and expensive if that was the case. The

					asynchronous handler is instead called at the following very specific times:

					1. When the host program calls

					queue::throw_asynchronous() on a specific queue

					2. When the host program calls

					queue::wait_and_throw() on a specific queue

					3. When the host program calls

					event::wait_and_throw() on a specific event

					4. When a queue is destroyed

					5. When a context is destroyed

					Methods 1–3 provide a mechanism for a host program to control

					when asynchronous exceptions are handled, so that thread safety and

					other details specific to an application can be managed. They effectively

					provide controlled points at which asynchronous exceptions enter the

					host program control flow and can be processed almost as if they were

					synchronous errors.

					145

					[bookmark: 170_0]
				

			

		

		
			
				
					Chapter 5 error handlIng

					If a user doesn’t explicitly call one of the methods 1–3, then asynchronous

					errors are commonly reported during program teardown when queues and

					contexts are destroyed. This is often enough to signal to a user that something

					went wrong and that program results shouldn’t be trusted.

					Relying on error detection during program teardown doesn’t work

					in all cases, though. For example, if a program will only terminate when

					some algorithm convergence criteria are achieved and if those criteria

					are only achievable by successful execution of device kernels, then an

					asynchronous exception may signal that the algorithm will never converge

					and begin the teardown (where the error would be noticed). In these cases,

					and also in production applications where more complete error handling

					strategies are in place, it makes sense to invoke throw_asynchronous()or

					wait_and_throw()at regular and controlled points in the program (e.g.,

					before checking whether algorithm convergence has occurred).

					Errors on a Device

					The error detection and handling mechanisms discussed in this chapter

					have been host-based. They are mechanisms through which the host

					program can detect and deal with something that may have gone wrong

					either in the host program or potentially during execution of kernels on

					devices. What we have not covered is how to signal, from within the device

					code that we write, that something has gone wrong. This omission is not a

					mistake, but quite intentional.

					SYCL explicitly disallows C++ exception handling mechanisms (such

					as throw) within device code, because there are performance costs for

					some types of device that we usually don’t want to pay. If we detect that

					something has gone wrong within our device code, we should signal the

					error using existing non-exception-based techniques. For example, we

					could write to a buffer that logs errors or return some invalid result from

					our numeric calculation that we define to mean that an error occurred.

					The right strategy in these cases is very application specific.

					146

					www. dbooks . or g

					[bookmark: 171_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 5 error handlIng

					Summary

					In this chapter, we introduced synchronous and asynchronous errors,

					covered the default behavior to expect if we do nothing to manage

					errors that might occur, and covered the mechanisms used to handle

					asynchronous errors at controlled points in our application. Error

					management strategies are a major topic in software engineering and a

					significant percentage of the code written in many applications. SYCL

					integrates with the C++ knowledge that we already have when it comes

					to error handling and provides flexible mechanisms to integrate with

					whatever our preferred error management strategy is.

					Open Access This chapter is licensed under the terms

					of the Creative Commons Attribution 4.0 International

					License (http://creativecommons.org/licenses/by/4.0/), which permits

					use, sharing, adaptation, distribution and reproduction in any medium or

					format, as long as you give appropriate credit to the original author(s) and

					the source, provide a link to the Creative Commons license and indicate if

					changes were made.

					The images or other third party material in this chapter are included

					in the chapter’s Creative Commons license, unless indicated otherwise

					in a credit line to the material. If material is not included in the chapter’s

					Creative Commons license and your intended use is not permitted by

					statutory regulation or exceeds the permitted use, you will need to obtain

					permission directly from the copyright holder.

					147

					[bookmark: 172_0]
				

			

		

		
			
				
					
				
			

			
				
					CHAPTER 6

					Unified Shared

					Memory

					The next two chapters provide a deeper look into how to manage data.

					There are two different approaches that complement each other: Unified

					Shared Memory (USM) and buffers. USM exposes a different level of

					abstraction for memory than buffers—USM has pointers, and buffers are a

					higher-level interface. This chapter focuses on USM. The next chapter will

					focus on buffers.

					Unless we specifically know that we want to use buffers, USM is a good

					place to start. USM is a pointer-based model that allows memory to be

					read and written through regular C++ pointers.

					© Intel Corporation 2021

					J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-5574-2_6

					149

					www. dbooks . or g

					[bookmark: 173_0]
					[bookmark: 173_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 6 Unified Shared MeMory

					Why Should We Use USM?

					Since USM is based on C++ pointers, it is a natural place to start for

					existing pointer-based C++ codes. Existing functions that take pointers

					as parameters continue to work without modification. In the majority of

					cases, the only changes required are to replace existing calls to mallocor

					newwith USM-specific allocation routines that we will discuss later in this

					chapter.

					Allocation Types

					While USM is based on C++ pointers, not all pointers are created equal.

					USM defines three different types of allocations, each with unique

					semantics. A device may not support all types (or even any type) of USM

					allocation. We will learn how to query what a device supports later. The

					three types of allocations and their characteristics are summarized in

					Figure 6-1.

					Figure 6-1. USM allocation types

					150

					[bookmark: 174_0]
					[bookmark: 174_1]
					[bookmark: 174_2]
					[bookmark: 174_3]
				

			

		

		
			
				
					Chapter 6 Unified Shared MeMory

					Device Allocations

					This first type of allocation is what we need in order to have a pointer into

					a device’s attached memory, such as (G)DDR or HBM. Device allocations

					can be read from or written to by kernels running on a device, but they

					cannot be directly accessed from code executing on the host. Trying to

					access a device allocation on the host can result in either incorrect data

					or a program crashing due to an error. We must copy data between host

					and device using the explicit USM memcpymechanisms, which specify how

					much data must be copied between two places, that will be covered later in

					this chapter.

					Host Allocations

					This second type of allocation is easier to use than device allocations since

					we do not have to manually copy data between the host and the device.

					Host allocations are allocations in host memory that are accessible on both

					the host and the device. These allocations, while accessible on the device,

					cannot migrate to the device’s attached memory. Instead, kernels that read

					from or write to this memory do it remotely, often over a slower bus such

					as PCI-Express. This tradeoff between convenience and performance is

					something that we must take into consideration. Despite the higher access

					costs that host allocations can incur, there are still valid reasons to use

					them. Examples include rarely accessed data or large data sets that cannot

					fit inside device attached memory.

					Shared Allocations

					The final type of allocation combines attributes of both device and host

					allocations, combining the programmer convenience of host allocations

					with the greater performance afforded by device allocations. Like host

					allocations, shared allocations are accessible on both the host and device.

					151

					www. dbooks . or g

					[bookmark: 175_0]
					[bookmark: 175_1]
					[bookmark: 175_2]
					[bookmark: 175_3]
				

			

		

		
			
				
					Chapter 6 Unified Shared MeMory

					The difference between them is that shared allocations are free to migrate

					between host memory and device attached memory, automatically,

					without our intervention. If an allocation has migrated to the device,

					any kernel executing on that device accessing it will do so with greater

					performance than remotely accessing it from the host. However, shared

					allocations do not give us all the benefits without any drawbacks.

					Automatic migration can be implemented in a variety of ways. No

					matter which way the runtime chooses to implement shared allocations,

					they usually pay a price of increased latency. With device allocations, we

					know exactly how much memory needs to be copied and can schedule the

					copy to begin as quickly as possible. The automatic migration mechanisms

					cannot see the future and, in some cases, do not begin moving data until a

					kernel tries to access it. The kernel must then wait, or block, until the data

					movement has completed before it can continue executing. In other cases,

					the runtime may not know exactly how much data the kernel will access

					and might conservatively move a larger amount of data than is required,

					also increasing latency for the kernel.

					We should also note that while shared allocations can migrate, it does

					not necessarily mean that all implementations of DPC++ will migrate

					them. We expect most implementations to implement shared allocations

					with migration, but some devices may prefer to implement them

					identically to host allocations. In such an implementation, the allocation is

					still visible on both host and device, but we may not see the performance

					gains that a migrating implementation could provide.

					Allocating Memory

					USM allows us to allocate memory in a variety of different ways that cater

					to different needs and preferences. However, before we go over all the

					methods in greater detail, we should discuss how USM allocations differ

					from regular C++ allocations.

					152

					[bookmark: 176_0]
					[bookmark: 176_1]
				

			

		

		
			
				
					Chapter 6 Unified Shared MeMory

					What Do We Need to Know?

					Regular C++ programs can allocate memory in multiple ways: new, malloc,

					or allocators. No matter which syntax we prefer, memory allocation is

					ultimately performed by the system allocator in the host operating system.

					When we allocate memory in C++, the only concerns are “How much

					memory do we need?” and “How much memory is available to allocate?”

					However, USM requires extra information before an allocation can be

					performed.

					First, USM allocation needs to specify which type of allocation is

					desired: device, host, or shared. It is important to request the right type

					of allocation in order to obtain the desired behavior for that allocation.

					Next, every USM allocation must specify a contextobject against

					which the allocation will be made. The contextobject hasn’t had a lot

					of discussion yet, so it’s worth saying a little about it here. A context

					represents a device or set of devices on which we can execute kernels.

					We can think of a context as a convenient place for the runtime to stash

					some state about what it’s doing. Programmers are not likely to directly

					interact with contexts outside of passing them around in most DPC++

					programs.

					USM allocations are not guaranteed to be usable across different

					contexts—it is important that all USM allocations, queues, and kernels

					share the same contextobject. Typically, we can obtain this context

					from the queue being used to submit work to a device. Finally, device

					allocations also require that we specify which device will provide the

					memory for the allocation. This is important since we do not want

					to oversubscribe the memory of our devices (unless the device is

					able to support this—we will say more about that later in the chapter

					when we discuss migration of data). USM allocation routines can be

					distinguished from their C++ analogues by the addition of these extra

					parameters.

					153

					www. dbooks . or g

					[bookmark: 177_0]
					[bookmark: 177_1]
				

			

		

		
			
				
					Chapter 6 Unified Shared MeMory

					Multiple Styles

					Sometimes, trying to please everyone with a single option proves to be an

					impossible task, just as some people prefer coffee over tea, or emacsover

					vi.If we ask programmers what an allocation interface should look like,

					we will get several different answers back. USM embraces this diversity of

					choice and provides several different flavors of allocation interfaces. These

					different flavors are C-style, C++-style, and C++ allocator–style. We will now

					discuss each and point out their similarities and differences.

					Allocations à la C

					The first style of allocation functions (listed in Figure 6-2, later used

					in examples shown in Figures 6-6 and 6-7) is modeled after memory

					allocation in C: mallocfunctions that take a number of bytes to allocate

					and return a void *pointer. This style of function is type agnostic. We

					must specify the total number of bytes to allocate, which means if we want

					to allocate Nobjects of type X, one must ask for N * sizeof(X)total bytes.

					The returned pointer is of type void *, which means that we must then

					cast it to an appropriate pointer to type X. This style is very simple but can

					be verbose due to the size calculations and typecasting required.

					We can further divide this style of allocation into two categories:

					named functions and single function. The distinction between these two

					flavors is how we specify the desired type of USM allocation. With the

					named functions (malloc_device, malloc_host, and malloc_shared),

					the type of USM allocation is encoded in the function name. The single

					function mallocrequires the type of USM allocation to be specified as an

					additional parameter. Neither flavor is better than the other, and the choice

					of which to use is governed by our preference.

					We cannot move on without briefly mentioning alignment. Each

					version of mallocalso has an aligned_alloccounterpart. The malloc

					functions return memory aligned to the default behavior of our device.

					154

					[bookmark: 178_0]
					[bookmark: 178_1]
				

			

		

		
			
				
					Chapter 6 Unified Shared MeMory

					It will return a legal pointer with a valid alignment, but there may be cases

					where we would prefer to manually specify an alignment. In these cases,

					we should use one of the aligned_allocvariants that also require us to

					specify the desired alignment for the allocation. Do not expect a program

					to work properly if we specify an illegal alignment! Legal alignments are

					powers of two. It’s worth noting that on many devices, allocations are

					maximally aligned to correspond to features of the hardware, so while we

					may ask for allocations to be 4-, 8-, 16-, or 32-byte aligned, we might in

					practice see larger alignments that give us what we ask for and then some.

					// Named Functions

					void *malloc_device(size_t size, const device &dev, const context &ctxt);

					void *malloc_device(size_t size, const queue &q);

					void *aligned_alloc_device(size_t alignment, size_t size,

					const device &dev, const context &ctxt);

					void *aligned_alloc_device(size_t alignment, size_t size, const queue &q);

					void *malloc_host(size_t size, const context &ctxt);

					void *malloc_host(size_t size, const queue &q);

					void *aligned_alloc_host(size_t alignment, size_t size, const context

					&ctxt);

					void *aligned_alloc_host(size_t alignment, size_t size, const queue &q);

					void *malloc_shared(size_t size, const device &dev, const context &ctxt);

					void *malloc_shared(size_t size, const queue &q);

					void *aligned_alloc_shared(size_t alignment, size_t size,

					const device &dev, const context &ctxt);

					void *aligned_alloc_shared(size_t alignment, size_t size, const queue &q);

					// Single Function

					void *malloc(size_t size, const device &dev, const context &ctxt,

					usm::alloc kind);

					void *malloc(size_t size, const queue &q, usm::alloc kind);

					void *aligned_alloc(size_t alignment, size_t size,

					const device &dev, const context &ctxt,

					usm::alloc kind);

					void *aligned_alloc(size_t alignment, size_t size, const queue &q,

					usm::alloc kind);

					Figure 6-2. C-style USM allocation functions

					155

					www. dbooks . or g

					[bookmark: 179_0]
					[bookmark: 179_1]
				

			

		

		
			
				
					Chapter 6 Unified Shared MeMory

					Allocations à la C++

					The next flavor of USM allocation functions (listed in Figure 6-3) is very

					similar to the first but with more of a C++ look and feel. We once again

					have both named and single function versions of the allocation routines as

					well as our default and user-specified alignment versions. The difference

					is that now our functions are C++ templated functions that allocate Count

					objects of type Tand return a pointer of type T *. Taking advantage of

					modern C++ simplifies things, since we no longer need to manually

					calculate the total size of the allocation in bytes or cast the returned

					pointer to the appropriate type. This also tends to yield a more compact

					and less error-prone expression in code. However, we should note that

					unlike “new” in C++, malloc-style interfaces do not invoke constructors for

					the objects being allocated—we are simply allocating enough bytes to fit

					that type.

					This flavor of allocation is a good place to start for new codes written

					with USM in mind. The previous C-style is a good starting point for existing

					C++ codes that already make heavy use of C or C++ malloc, to which we

					will add the use of USM.

					156

					[bookmark: 180_0]
				

			

		

		
			
				
					Chapter 6 Unified Shared MeMory

					// Named Functions

					template <typename T>

					T *malloc_device(size_t Count, const device &Dev, const context &Ctxt);

					template <typename T>

					T *malloc_device(size_t Count, const queue &Q);

					template <typename T>

					T *aligned_alloc_device(size_t Alignment, size_t Count, const device &Dev,

					const context &Ctxt);

					template <typename T>

					T *aligned_alloc_device(size_t Alignment, size_t Count, const queue &Q);

					template <typename T> T *malloc_host(size_t Count, const context &Ctxt);

					template <typename T> T *malloc_host(size_t Count, const queue &Q);

					template <typename T>

					T *aligned_alloc_host(size_t Alignment, size_t Count, const context &Ctxt);

					template <typename T>

					T *aligned_alloc_host(size_t Alignment, size_t Count, const queue &Q);

					template <typename T>

					T *malloc_shared(size_t Count, const device &Dev, const context &Ctxt);

					template <typename T> T *malloc_shared(size_t Count, const queue &Q);

					template <typename T>

					T *aligned_alloc_shared(size_t Alignment, size_t Count, const device &Dev,

					const context &Ctxt);

					template <typename T>

					T *aligned_alloc_shared(size_t Alignment, size_t Count, const queue &Q);

					// Single Function

					template <typename T>

					T *malloc(size_t Count, const device &Dev, const context &Ctxt,

					usm::alloc Kind);

					template <typename T> T *malloc(size_t Count, const queue &Q, usm::alloc

					Kind);

					template <typename T>

					T *aligned_alloc(size_t Alignment, size_t Count, const device &Dev,

					const context &Ctxt, usm::alloc Kind);

					template <typename T>

					T *aligned_alloc(size_t Alignment, size_t Count, const queue &Q,

					usm::alloc Kind);

					Figure 6-3. C++-style USM allocation functions

					C++ Allocators

					The final flavor of USM allocation (Figure 6-4) embraces modern C++

					even more than the previous flavor. This flavor is based on the C++

					allocator interface, which defines objects that are used to perform

					memory allocations either directly or indirectly inside a container such

					157

					www. dbooks . or g

					[bookmark: 181_0]
					[bookmark: 181_1]
				

			

		

		
			
				
					Chapter 6 Unified Shared MeMory

					as std::vector. This allocator flavor is most useful if our code makes

					heavy use of container objects that can hide the details of memory

					allocation and deallocation from the user, simplifying code and reducing

					the opportunity for bugs.

					template <class T, usm::alloc AllocKind, size_t Alignment = 0>

					class usm_allocator {

					public:

					using value_type = T;

					template <typename U> struct rebind {

					typedef usm_allocator<U, AllocKind, Alignment> other;

					};

					usm_allocator() noexcept = delete;

					usm_allocator(const context &Ctxt, const device &Dev) noexcept;

					usm_allocator(const queue &Q) noexcept;

					usm_allocator(const usm_allocator &Other) noexcept;

					template <class U>

					usm_allocator(usm_allocator<U, AllocKind, Alignment> const &) noexcept;

					T *allocate(size_t NumberOfElements);

					void deallocate(T *Ptr, size_t Size);

					template <

					usm::alloc AllocT = AllocKind,

					typename std::enable_if<AllocT != usm::alloc::device, int>::type = 0,

					class U, class... ArgTs>

					void construct(U *Ptr, ArgTs &&... Args);

					template <

					usm::alloc AllocT = AllocKind,

					typename std::enable_if<AllocT == usm::alloc::device, int>::type = 0,

					class U, class... ArgTs>

					void construct(U *Ptr, ArgTs &&... Args);

					template <

					usm::alloc AllocT = AllocKind,

					typename std::enable_if<AllocT != usm::alloc::device, int>::type = 0>

					void destroy(T *Ptr);

					template <

					usm::alloc AllocT = AllocKind,

					typename std::enable_if<AllocT == usm::alloc::device, int>::type = 0>

					void destroy(T *Ptr);

					};

					Figure 6-4. C++ allocator–style USM allocation functions

					158

					[bookmark: 182_0]
					[bookmark: 182_1]
				

			

		

		
			
				
					Chapter 6 Unified Shared MeMory

					Deallocating Memory

					Whatever a program allocates must eventually be deallocated. USM

					defines a freemethod to deallocate memory allocated by one of the

					mallocor aligned_mallocfunctions. This freemethod also takes the

					context in which the memory was allocated as an extra parameter. The

					queue can also be substituted for the context. If memory was allocated

					with a C++ allocator object, it should also be deallocated using that object.

					constexpr int N = 42;

					queue Q;

					// Allocate N floats

					// C-style

					float *f1 = static_cast<float*>(malloc_shared(N*sizeof(float),Q));

					// C++-style

					float *f2 = malloc_shared<float>(N, Q);

					// C++-allocator-style

					usm_allocator<float, usm::alloc::shared> alloc(Q);

					float *f3 = alloc.allocate(N);

					// Free our allocations

					free(f1, Q.get_context());

					free(f2, Q);

					alloc.deallocate(f3, N);

					Figure 6-5. Three styles for allocation

					Allocation Example

					In Figure 6-5, we show how to perform the same allocation using the

					three styles just described. In this example, we allocate Nsingle-precision

					floating-point numbers as shared allocations. The first allocation f1uses

					the C-style void *returning malloc routines. For this allocation, we

					explicitly pass the device and context that we obtain from the queue.

					159

					www. dbooks . or g

					[bookmark: 183_0]
					[bookmark: 183_1]
					[bookmark: 183_2]
					[bookmark: 183_3]
				

			

		

		
			
				
					Chapter 6 Unified Shared MeMory

					We must also cast the result back to a float *. The second allocation f2

					does the same thing but using the C++-style templated malloc. Since we

					pass the type of our elements, float, to the allocation routine, we only

					need to specify how many floats we want to allocate, and we do not need

					to cast the result. We also use the form that takes the queue instead of the

					device and context, yielding a very simple and compact statement. The

					third allocation f3uses the USM C++ allocator class. We instantiate an

					allocator object of the proper type and then perform the allocation using

					that object. Finally, we show how to properly deallocate each allocation.

					Data Management

					Now that we understand how to allocate memory using USM, we will

					discuss how data is managed. We can look at this in two pieces: data

					initialization and data movement.

					Initialization

					Data initialization concerns filling our memory with values before we

					perform computations on it. One example of a common initialization pattern

					is to fill an allocation with zeroes before it is used. If we were to do this using

					USM allocations, we could do it in a variety of ways. First, we could write

					a kernel to do this. If our data set is particularly large or the initialization

					requires complex calculations, this is a reasonable way to go since the

					initialization can be performed in parallel (and it makes the initialized data

					ready to go on the device). Second, we could implement this as a loop over

					all the elements of an allocation that sets each to zero. However, there is

					potentially a problem with this approach. A loop would work fine for host

					and shared allocations since these are accessible on the host. However, since

					device allocations are not accessible on the host, a loop in host code would

					not be able to write to them. This brings us to the third option.

					160

					[bookmark: 184_0]
					[bookmark: 184_1]
					[bookmark: 184_2]
				

			

		

		
			
				
					Chapter 6 Unified Shared MeMory

					The memsetfunction is designed to efficiently implement this

					initialization pattern. USM provides a version of memsetthat is a member

					function of both the handlerand queueclasses. It takes three arguments:

					the pointer representing the base address of the memory we want to set, a

					byte value representing the byte pattern to set, and the number of bytes to

					set to that pattern. Unlike a loop on the host, memsethappens in parallel

					and also works with deviceallocations.

					While memsetis a useful operation, the fact that it only allows us to

					specify a byte pattern to fill into an allocation is rather limiting. USM also

					provides a fillmethod (as a member of the handlerand queueclasses)

					that lets us fill memory with an arbitrary pattern. The fill method is a

					function templated on the type of the pattern we want to write into the

					allocation. Template it with an int, and we can fill an allocation with the

					number “42”. Similar to memset, filltakes three arguments: the pointer to

					the base address of the allocation to fill, the value to fill, and the number of

					times we want to write that value into the allocation.

					Data Movement

					Data movement is probably the most important aspect of USM to

					understand. If the right data is not in the right place at the right time, our

					program will produce incorrect results. USM defines two strategies that we

					can use to manage data: explicit and implicit. The choice of which strategy

					we want to use is related to the types of USM allocations our hardware

					supports or that we want to use.

					Explicit

					The first strategy USM offers is explicit data movement (Figure 6-6).

					Here, we must explicitly copy data between the host and device. We can

					do this by invoking the memcpymethod, found on both the handlerand

					queueclasses. The memcpymethod takes three arguments: a pointer to the

					161

					www. dbooks . or g

					[bookmark: 185_0]
					[bookmark: 185_1]
				

			

		

		
			
				
					Chapter 6 Unified Shared MeMory

					destination memory, a pointer to the source memory, and the number of

					bytes to copy between host and device. We do not need to specify in which

					direction the copy is meant to happen—this is implicit in the source and

					destination pointers.

					The most common usage of explicit data movement is copying to

					or from deviceallocations in USM since they are not accessible on the

					host. Having to insert explicit copying of data does require effort on our

					part. Additionally, it can be a source of bugs: copies could be accidentally

					omitted, an incorrect amount of data could be copied, or the source or

					destination pointer could be incorrect.

					However, explicit data movement does not only come with

					disadvantages. It gives us large advantage: total control over data

					movement. Control over both how much data is copied and when the data

					gets copied is very important for achieving the best performance in some

					applications. Ideally, we can overlap computation with data movement

					whenever possible, ensuring that the hardware runs with high utilization.

					The other types of USM allocations, hostand shared, are both

					accessible on host and device and do not need to be explicitly copied to

					the device. This leads us to the other strategy for data movement in USM.

					162

				

			

		

		
			
				
					Chapter 6 Unified Shared MeMory

					constexpr int N = 42;

					queue Q;

					std::array<int,N> host_array;

					int *device_array = malloc_device<int>(N, Q);

					for (int i = 0; i < N; i++)

					host_array[i] = N;

					Q.submit([&](handler& h) {

					// copy hostArray to deviceArray

					h.memcpy(device_array, &host_array[0], N * sizeof(int));

					});

					Q.wait(); // needed for now (we learn a better way later)

					Q.submit([&](handler& h) {

					h.parallel_for(N, [=](id<1> i) {

					device_array[i]++;

					});

					});

					Q.wait(); // needed for now (we learn a better way later)

					Q.submit([&](handler& h) {

					// copy deviceArray back to hostArray

					h.memcpy(&host_array[0], device_array, N * sizeof(int));

					});

					Q.wait(); // needed for now (we learn a better way later)

					free(device_array, Q);

					Figure 6-6. USM explicit data movement example

					Implicit

					The second strategy that USM provides is implicit data movement

					(example usage shown in Figure 6-7). In this strategy, data movement

					happens implicitly, that is, without requiring input from us. With implicit

					data movement, we do not need to insert calls to memcpysince we can

					directly access the data through the USM pointers wherever we want to use

					it. Instead, it becomes the job of the system to ensure that the data will be

					available in the correct location when it is being used.

					163

					www. dbooks . or g

					[bookmark: 187_0]
					[bookmark: 187_1]
				

			

		

		
			
				
					Chapter 6 Unified Shared MeMory

					With host allocations, one could argue whether they really cause

					data movement. Since, by definition, they always remain pointers to host

					memory, the memory represented by a given host pointer cannot be stored

					on the device. However, data movement does occur as host allocations

					are accessed on the device. Instead of the memory being migrated to the

					device, the values we read or write are transferred over the appropriate

					interface to or from the kernel. This can be useful for streaming kernels

					where the data does not need to remain resident on the device.

					Implicit data movement mostly concerns USM shared allocations.

					This type of allocation is accessible on both host and device and, more

					importantly, can migrate between host and device. The key point is that

					this migration happens automatically, or implicitly, simply by accessing

					the data in a different location. Next, we will discuss several things to think

					about when it comes to data migration for shared allocations.

					constexpr int N = 42;

					queue Q;

					int* host_array = malloc_host<int>(N, Q);

					int* shared_array = malloc_shared<int>(N, Q);

					for (int i = 0; i < N; i++)

					host_array[i] = i;

					Q.submit([&](handler& h) {

					h.parallel_for(N, [=](id<1> i) {

					// access sharedArray and hostArray on device

					shared_array[i] = host_array[i] + 1;

					});

					});

					Q.wait();

					free(shared_array, Q);

					free(host_array, Q);

					Figure 6-7. USM implicit data movement example

					164

					[bookmark: 188_0]
				

			

		

		
			
				
					Chapter 6 Unified Shared MeMory

					Migration

					With explicit data movement, we control how much data movement

					occurs. With implicit data movement, the system handles this for us, but

					it might not do it as efficiently. The DPC++ runtime is not an oracle—

					it cannot predict what data an application will access before it does

					it. Additionally, pointer analysis remains a very difficult problem for

					compilers, which may not be able to accurately analyze and identify

					every allocation that might be used inside a kernel. Consequently,

					implementations of the mechanisms for implicit data movement may

					make different decisions based on the capabilities of the device that

					supports USM, which affects both how shared allocations can be used and

					how they perform.

					If a device is very capable, it might be able to migrate memory on

					demand. In this case, data movement would occur after the host or

					device attempts to access an allocation that is not currently in the desired

					location. On-demand data greatly simplifies programming as it provides

					the desired semantic that a USM shared pointer can be accessed anywhere

					and just work. If a device cannot support on-demand migration (Chapter

					12 explains how to query a device for capabilities), it might still be able

					to guarantee the same semantics with extra restrictions on how shared

					pointers can be used.

					The restricted form of USM shared allocations governs when and

					where shared pointers may be accessed and how big shared allocations

					can be. If a device cannot migrate memory on demand, that means the

					runtime must be conservative and assume that a kernel might access

					any allocation in its device attached memory. This brings a couple of

					consequences.

					First, it means that the host and device should not try to access a

					shared allocation at the same time. Applications should instead alternate

					access in phases. The host can access an allocation, then a kernel can

					compute using that data, and finally the host can read the results.

					165

					www. dbooks . or g

					[bookmark: 189_0]
				

			

		

		
			
				
					Chapter 6 Unified Shared MeMory

					Without this restriction, the host is free to access different parts of an

					allocation than a kernel is currently touching. Such concurrent access

					typically happens at the granularity of a device memory page. The host

					could access one page, while the device accesses another. Atomically

					accessing the same piece of data will be covered in Chapter 19.

					The next consequence of this restricted form of shared allocations is

					that allocations are limited by the total amount of memory attached to a

					device. If a device cannot migrate memory on demand, it cannot migrate

					data to the host to make room to bring in different data. If a device does

					support on-demand migration, it is possible to oversubscribe its attached

					memory, allowing a kernel to compute on more data than the device’s

					memory could normally contain, although this flexibility may come with a

					performance penalty due to extra data movement.

					Fine-Grained Control

					When a device supports on-demand migration of shared allocations, data

					movement occurs after memory is accessed in a location where it is not

					currently resident. However, a kernel can stall while waiting for the data

					movement to complete. The next statement it executes may even cause

					more data movement to occur and introduce additional latency to the

					kernel execution.

					DPC++ gives us a way to modify the performance of the automatic

					migration mechanisms. It does this by defining two functions: prefetch

					and mem_advise. Figure 6-8 shows a simple utilization of each. These

					functions let us give hints to the runtime about how kernels will access

					data so that the runtime can choose to start moving data before a kernel

					tries to access it. Note that this example uses the queue shortcut methods

					that directly invoke parallel_foron the queueobject instead of inside a

					lambda passed to the submitmethod (a command group).

					166

				

			

		

		
			
				
					Chapter 6 Unified Shared MeMory

					// Appropriate values depend on your HW

					constexpr int BLOCK_SIZE = 42;

					constexpr int NUM_BLOCKS = 2500;

					constexpr int N = NUM_BLOCKS * BLOCK_SIZE;

					queue Q;

					int *data = malloc_shared<int>(N, Q);

					int *read_only_data = malloc_shared<int>(BLOCK_SIZE, Q);

					// Never updated after initialization

					for (int i = 0; i < BLOCK_SIZE; i++)

					read_only_data[i] = i;

					// Mark this data as "read only" so the runtime can copy it

					// to the device instead of migrating it from the host.

					// Real values will be documented by your DPC++ backend.

					int HW_SPECIFIC_ADVICE_RO = 0;

					Q.mem_advise(read_only_data, BLOCK_SIZE, HW_SPECIFIC_ADVICE_RO);

					event e = Q.prefetch(data, BLOCK_SIZE);

					for (int b = 0; b < NUM_BLOCKS; b++) {

					Q.parallel_for(range{BLOCK_SIZE}, e, [=](id<1> i) {

					data[b * BLOCK_SIZE + i] += data[i];

					});

					if ((b + 1) < NUM_BLOCKS) {

					// Prefetch next block

					e = Q.prefetch(data + (b + 1) * BLOCK_SIZE, BLOCK_SIZE);

					}

					}

					Q.wait();

					free(data, Q);

					free(read_only_data, Q);

					Figure 6-8. Fine-grained control via prefetch and mem_advise

					The simplest way for us to do this is by invoking prefetch. This

					function is invoked as a member function of the handleror queueclass

					and takes a base pointer and number of bytes. This lets us inform the

					runtime that certain data is about to be used on a device so that it can

					eagerly start migrating it. Ideally, we would issue these prefetch hints early

					enough such that by the time the kernel touches the data, it is already

					resident on the device, eliminating the latency we previously described.

					167

					www. dbooks . or g

					[bookmark: 191_0]
					[bookmark: 191_1]
				

			

		

		
			
				
					Chapter 6 Unified Shared MeMory

					The other function provided by DPC++ is mem_advise. This function

					allows us to provide device-specific hints about how memory will be used in

					kernels. An example of such possible advice that we could specify is that the

					data will only be read in a kernel, not written. In that case, the system could

					realize it could copy, or duplicate, the data on the device, so that the host’s

					version does not need to be updated after the kernel is complete. However,

					the advice passed to mem_adviseis specific to a particular device, so be sure

					to check the documentation for hardware before using this function.

					Queries

					Finally, not all devices support every feature of USM. We should not assume

					that all USM features are available if we want our programs to be portable

					across different devices. USM defines several things that we can query.

					These queries can be separated into two categories: pointer queries and

					device capability queries. Figure 6-9 shows a simple utilization of each.

					The pointer queries in USM answer two questions. The first question

					is “What type of USM allocation does this pointer point to?” The get_

					pointer_typefunction takes a pointer and DPC++ context and returns

					a result of type usm::alloc, which can have four possible values: host,

					device, shared, or unknown. The second question is “What device was this

					USM pointer allocated against?” We can pass a pointer and a context to the

					function get_pointer_deviceand get back a device object. This is mostly

					used with device or shared USM allocations since it does not make much

					sense with host allocations.

					The second type of query provided by USM concerns the capabilities

					of a device. USM extends the list of device information descriptors that

					can be queried by calling get_infoon a device object. These queries can

					be used to test which types of USM allocations are supported by a device.

					Additionally, we can query if shared allocations are restricted on the

					168

					[bookmark: 192_0]
					[bookmark: 192_1]
				

			

		

		
			
				
					Chapter 6 Unified Shared MeMory

					device in the ways we previously described in this chapter. The full list of

					queries is shown in Figure 6-10. In Chapter 12, we will look at the query

					mechanism in more detail.

					constexpr int N = 42;

					template <typename T> void foo(T data, id<1> i) { data[i] = N; }

					queue Q;

					auto dev = Q.get_device();

					auto ctxt = Q.get_context();

					bool usm_shared = dev.get_info<dinfo::usm_shared_allocations>();

					bool usm_device = dev.get_info<dinfo::usm_device_allocations>();

					bool use_USM = usm_shared || usm_device;

					if (use_USM) {

					int *data;

					if (usm_shared)

					data = malloc_shared<int>(N, Q);

					else /* use device allocations */

					data = malloc_device<int>(N, Q);

					std::cout << "Using USM with "

					<< ((get_pointer_type(data, ctxt) == usm::alloc::shared)

					? "shared"

					: "device")

					<< " allocations on "

					<< get_pointer_device(data, ctxt).get_info<dinfo::name>()

					<< "\n";

					Q.parallel_for(N, [=](id<1> i) { foo(data, i); });

					Q.wait();

					free(data, Q);

					} else /* use buffers */ {

					buffer<int, 1> data{range{N}};

					Q.submit([&](handler &h) {

					accessor a(data, h);

					h.parallel_for(N, [=](id<1> i) {

					foo(a, i); });

					});

					Q.wait();

					}

					Figure 6-9. Queries on USM pointers and devices

					169

					www. dbooks . or g

					[bookmark: 193_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 6 Unified Shared MeMory

					Figure 6-10. USM device information descriptors

					Summary

					In this chapter, we’ve described Unified Shared Memory, a pointer-based

					strategy for data management. We covered the three types of allocations

					that USM defines. We discussed all the different ways that we can allocate

					and deallocate memory with USM and how data movement can be either

					explicitly controlled by us (the programmers) for device allocations or

					implicitly controlled by the system for shared allocations. Finally, we

					discussed how to query the different USM capabilities that a device

					supports and how to query information about USM pointers in a program.

					Since we have not discussed synchronization in this book in detail

					yet, there is more on USM in later chapters when we discuss scheduling,

					communications, and synchronization. Specifically, we cover these

					additional considerations for USM in Chapters 8, 9, and 19.

					In the next chapter, we will cover the second strategy for data

					management: buffers.

					170

					[bookmark: 194_0]
					[bookmark: 194_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 6 Unified Shared MeMory

					Open Access This chapter is licensed under the terms

					of the Creative Commons Attribution 4.0 International

					License (http://creativecommons.org/licenses/by/4.0/), which permits

					use, sharing, adaptation, distribution and reproduction in any medium or

					format, as long as you give appropriate credit to the original author(s) and

					the source, provide a link to the Creative Commons license and indicate if

					changes were made.

					The images or other third party material in this chapter are included

					in the chapter’s Creative Commons license, unless indicated otherwise

					in a credit line to the material. If material is not included in the chapter’s

					Creative Commons license and your intended use is not permitted by

					statutory regulation or exceeds the permitted use, you will need to obtain

					permission directly from the copyright holder.

					171

					www. dbooks . or g

				

			

		

		
			
				
					
				
			

			
				
					CHAPTER 7

					Buffers

					In this chapter, we will learn about the buffer abstraction. We learned

					about Unified Shared Memory (USM), the pointer-based strategy for data

					management, in the previous chapter. USM forces us to think about where

					memory lives and what should be accessible where. The buffer abstraction

					is a higher-level model that hides this from the programmer. Buffers simply

					represent data, and it becomes the job of the runtime to manage how the

					data is stored and moved in memory.

					This chapter presents an alternative approach to managing our data.

					The choice between buffers and USM often comes down to personal

					preference and the style of existing code, and applications are free to mix

					and match the two styles in representation of different data within the

					application.

					© Intel Corporation 2021

					J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-5574-2_7

					173

					[bookmark: 196_0]
				

			

		

		
			
				
					Chapter 7 Buffers

					USM simply exposes different abstractions for memory. USM has

					pointers, and buffers are a higher-level abstraction. The abstraction level

					of buffers allows the data contained within to be used on any device within

					the application, where the runtime manages whatever is needed to make

					that data available. Choices are good, so let’s dive into buffers.

					We will look more closely at how buffers are created and used. A

					discussion of buffers would not be complete without also discussing the

					accessor. While buffers abstract how we represent and store data in a

					program, we do not directly access the data using the buffer. Instead, we

					use accessor objects that inform the runtime how we intend to use the

					data we are accessing, and accessors are tightly coupled to the powerful

					data dependence mechanisms within task graphs. After we cover all the

					things we can do with buffers, we will also explore how to create and use

					accessors in our programs.

					Buffers

					A buffer is a high-level abstraction for data. Buffers are not necessarily tied

					to a single location or virtual memory address. Indeed, the runtime is free

					to use many different locations in memory (even across different devices) to

					represent a buffer, but the runtime must be sure to always give us a consistent

					view of the data. A buffer is accessible on the host and on any device.

					template <typename T, int Dimensions, AllocatorT allocator>

					class buffer;

					Figure 7-1. Buffer class definition

					The bufferclass is a template class with three template arguments, as

					shown in Figure 7-1. The first template argument is the type of the object

					that the buffer will contain. This type must be trivially copyable as defined

					by C++, which basically means that it is safe to copy this object byte by byte

					without using any special copy or move constructors. The next template

					174

					www. dbooks . or g

					[bookmark: 197_0]
					[bookmark: 197_1]
				

			

		

		
			
				
					Chapter 7 Buffers

					argument is an integer describing the dimensionality of the buffer. The

					final template argument is optional, and the default value is usually what

					is used. This argument specifies a C++-style allocator class that is used to

					perform any memory allocations on the host that are needed for the buffer.

					First, we will examine the many ways that buffer objects can be created.

					Creation

					In the following figures, we show several ways in which buffer objects

					can be created. The choice of how to create buffers in application code is

					a combination of how the buffer needs to be used and personal coding

					preferences. Let’s walk through the example and look at each instance.

					// Create a buffer of 2x5 ints using the default allocator

					buffer<int, 2, buffer_allocator> b1{range<2>{2, 5}};

					// Create a buffer of 2x5 ints using the default allocator

					// and CTAD for range

					buffer<int, 2> b2{range{2, 5}};

					// Create a buffer of 20 floats using a

					// default-constructed std::allocator

					buffer<float, 1, std::allocator<float>> b3{range{20}};

					// Create a buffer of 20 floats using a passed-in allocator

					std::allocator<float> myFloatAlloc;

					buffer<float, 1, std::allocator<float>> b4{range(20), myFloatAlloc};

					Figure 7-2. Creating buffers, Part 1

					The first buffer we create in Figure 7-2, b1, is a two-dimensional buffer

					of ten integers. We explicitly pass all template arguments, even explicitly

					passing the default value of buffer_allocatoras the allocator type.

					However, using modern C++, we can express this much more compactly.

					Buffer b2is also a two-dimensional buffer of ten integers using the default

					allocator. Here we make use of C++17’s class template argument deduction

					(CTAD) to automatically infer template arguments we have to express.

					175

					[bookmark: 198_0]
					[bookmark: 198_1]
				

			

		

		
			
				
					Chapter 7 Buffers

					CTAD is an all-or-none tool—it must either infer every template argument

					for a class or infer none of them. In this case, we use the fact that we are

					initializing b2with a range that takes two arguments to infer that it is a two-

					dimensional range. The allocator template argument has a default value,

					so we do not need to explicitly list it when creating the buffer.

					With buffer b3, we create a buffer of 20 floats and use a default-

					constructed std::allocator<float>to allocate any necessary memory on

					the host. When using a custom allocator type with a buffer, we often want

					to pass an actual allocator object to the buffer to use instead of the default-

					constructed one. Buffer b4shows how to do this, taking the allocator object

					after the range in the call to its constructor.

					For the first four buffers in our example, we let the buffer allocate any

					memory it needs and do not initialize that data with any values at the time of

					their creation. It is a common pattern to use buffers to effectively wrap existing

					C++ allocations, which may already have been initialized with data. We can

					do this by passing a source of initial values to the buffer constructor. Doing so

					allows us to do several things, which we will see with the next example.

					// Create a buffer of 4 doubles and initialize it from a host pointer

					double myDoubles[4] = {1.1, 2.2, 3.3, 4.4};

					buffer b5{myDoubles, range{4}};

					// Create a buffer of 5 doubles and initialize it from a host pointer

					// to const double

					const double myConstDbls[5] = {1.0, 2.0, 3.0, 4.0, 5.0};

					buffer b6{myConstDbls, range{5}};

					// Create a buffer from a shared pointer to int

					auto sharedPtr = std::make_shared<int>(42);

					buffer b7{sharedPtr, range{1}};

					Figure 7-3. Creating buffers, Part 2

					In Figure 7-3, buffer b5creates a one-dimensional buffer of four

					doubles. We pass the host pointer to the C array myDoublesto the buffer

					constructor in addition to the range that specifies the size of the buffer.

					Here we can make full use of CTAD to infer all the template arguments

					176

					www. dbooks . or g

					[bookmark: 199_0]
				

			

		

		
			
				
					Chapter 7 Buffers

					of our buffer. The host pointer we pass points to doubles, which gives us

					the data type of our buffer. The number of dimensions is automatically

					inferred from the one-dimensional range, which itself is inferred because

					it is created with only one number. Finally, the default allocator is used, so

					we do not have to specify that.

					Passing a host pointer has a few ramifications of which we should be

					aware. By passing a pointer to host memory, we are promising the runtime

					that we will not try to access the host memory during the lifetime of the

					buffer. This is not (and cannot be) enforced by a SYCL implementation—

					it is our responsibility to ensure that we do not break this contract. One

					reason that we should not try to access this memory while the buffer is

					alive is that the buffer may choose to use different memory on the host to

					represent the buffer content, often for optimization reasons. If it does so,

					the values will be copied into this new memory from the host pointer. If

					subsequent kernels modify the buffer, the original host pointer will not

					reflect the updated values until certain specified synchronization points.

					We will talk more about when data gets written back to a host pointer later

					in this chapter.

					Buffer b6is very similar to buffer b5with one major difference. This

					time, we are initializing the buffer with a pointer to const double. This

					means that we can only read values through the host pointer and not write

					them. However, the type for our buffer in this example is still double, not

					const doublesince the deduction guides do not take const-ness into

					consideration. This means that the buffer may be written to by a kernel,

					but we must use a different mechanism to update the host after the buffer

					has outlived its use (covered later in this chapter).

					Buffers can also be initialized using C++ shared pointer objects. This

					is useful if our application already uses shared pointers, as this method of

					initialization will properly count the reference and ensure that the memory

					is not deallocated. Buffer b7initializes a buffer from a single integer and

					initializes it using a shared pointer.

					177

				

			

		

		
			
				
					Chapter 7 Buffers

					// Create a buffer of ints from an input iterator

					std::vector<int> myVec;

					buffer b8{myVec.begin(), myVec.end()};

					buffer b9{myVec};

					// Create a buffer of 2x5 ints and 2 non-overlapping

					// sub-buffers of 5 ints.

					buffer<int, 2> b10{range{2, 5}};

					buffer b11{b10, id{0, 0}, range{1, 5}};

					buffer b12{b10, id{1, 0}, range{1, 5}};

					Figure 7-4. Creating buffers, Part 3

					Containers are commonly used in modern C++ applications, with

					examples including std::array, std::vector, std::list, or std::map.

					We can initialize one-dimensional buffers using containers in two

					different ways. The first way, as shown in Figure 7-4 by buffer b8, uses

					input iterators. Instead of a host pointer, we pass two iterators to the buffer

					constructor, one representing the beginning of the data and another

					representing the end. The size of the buffer is computed as the number

					of elements returned by incrementing the start iterator until it equals

					the end iterator. This is useful for any data type that implements the C++

					InputIteratorinterface. If the container object that provides the initial

					values for a buffer is also contiguous, then we can use an even simpler

					form to create the buffer. Buffer b9creates a buffer from a vector simply by

					passing the vector to the constructor. The size of the buffer is determined

					by the size of the container being used to initialize it, and the type for the

					buffer data comes from the type of the container data. Creating buffers

					using this approach is common and recommended from containers such

					as std::vectorand std::array.

					The final example of buffer creation illustrates another feature of the

					buffer class. It is possible to create a view of a buffer from another buffer,

					or a sub-buffer. A sub-buffer requires three things: a reference to a parent

					buffer, a base index, and the range of the sub-buffer. A sub-buffer cannot

					be created from a sub-buffer. Multiple sub-buffers can be created from

					the same buffer, and they are free to overlap. Buffer b10is created exactly

					178

					www. dbooks . or g

					[bookmark: 201_0]
				

			

		

		
			
				
					Chapter 7 Buffers

					like buffer b2, a two-dimensional buffer of integers with five integers per

					row. Next, we create two sub-buffers from buffer b10, sub-buffers b11and

					b12. Sub-buffer b11starts at index (0,0)and contains every element in

					the first row. Similarly, sub-buffer b12starts at index (1,0)and contains

					every element in the second row. This yields two disjoint sub-buffers.

					Since the sub-buffers do not overlap, different kernels could operate on the

					different sub-buffers concurrently, but we will talk more about scheduling

					execution graphs and dependences in the next chapter.

					queue Q;

					int my_ints[42];

					// create a buffer of 42 ints

					buffer<int> b{range(42)};

					// create a buffer of 42 ints, initialize

					// with a host pointer, and add the

					// use_host_pointer property

					buffer b1{my_ints, range(42),

					{property::buffer::use_host_ptr{}}};

					// create a buffer of 42 ints, initialize pointer,

					// with a host and add the use_mutex property

					std::mutex myMutex;

					buffer b2{my_ints, range(42),

					{property::buffer::use_mutex{myMutex}}};

					// Retrive a pointer to the mutex used by this buffer

					auto mutexPtr =

					b2.get_property<property::buffer::use_mutex>().

					get_mutex_ptr();

					// lock the mutex until we exit scope

					std::lock_guard<std::mutex> guard{*mutexPtr};

					// create a context-bound buffer of 42 ints,

					// initialized from a host pointer

					buffer b3{my_ints, range(42),

					{property::buffer::context_bound{Q.get_context()}}};

					Figure 7-5. Buffer properties

					179

					[bookmark: 202_0]
				

			

		

		
			
				
					Chapter 7 Buffers

					Buffer Properties

					Buffers can also be created with special properties that alter their behavior.

					In Figure 7-5, we will walk through an example of the three different

					optional buffer properties and discuss how they might be used. Note that

					these properties are relatively uncommon in most codes.

					use_host_ptr

					The first property that may be optionally specified during buffer creation

					is use_host_ptr. When present, this property requires the buffer to not

					allocate any memory on the host, and any allocator passed or specified

					on buffer construction is effectively ignored. Instead, the buffer must use

					the memory pointed to by a host pointer that is passed to the constructor.

					Note that this does not require the device to use the same memory to hold

					the buffer’s data. A device is free to cache the contents of a buffer in its

					attached memory. Also note that this property may only be used when a

					host pointer is passed to the constructor. This option can be useful when

					the program wants full control over all host memory allocations.

					In our example in Figure 7-5, we create a buffer bas we saw in our

					previous examples. We next create buffer b1and initialize it with a pointer

					to myInts. We also pass the property use_host_ptr, which means that

					buffer b1will only use the memory pointed to by myIntsand not allocate

					any additional temporary storage.

					use_mutex

					The next property, use_mutex, concerns fine-grained sharing of memory

					between buffers and host code. Buffer b2is created using this property.

					The property takes a reference to a mutex object that can later be queried

					from the buffer as we see in the example. This property also requires a host

					pointer be passed to the constructor, and it lets the runtime determine

					when it is safe to access updated values in host code through the provided

					180

					www. dbooks . or g

					[bookmark: 203_0]
				

			

		

		
			
				
					Chapter 7 Buffers

					host pointer. We cannot lock the mutex until the runtime guarantees that

					the host pointer sees the latest value of the buffer. While this could be

					combined with the use_host_ptrproperty, it is not required. use_mutex

					is a mechanism that allows host code to access data within a buffer while

					the buffer is still alive and without using the host accessor mechanism

					(described later). In general, the host accessor mechanism should be

					preferred unless we have a specific reason to use a mutex, particularly

					because there are no guarantees on how long it will take before the mutex

					will be successfully locked and the data ready for use by host code.

					context_bound

					The final property is shown in the creation of buffer b3in our example.

					Here, our buffer of 42 integers is created with the context_boundproperty.

					The property takes a reference to a context object. Normally, a buffer is

					free to be used on any device or context. However, if this property is used,

					it locks the buffer to the specified context. Attempting to use the buffer

					on another context will result in a runtime error. This could be useful

					for debugging programs by identifying cases where a kernel might be

					submitted to the wrong queue, for instance. In practice, we do not expect

					to see this property used in many programs, and the ability for buffers

					to be accessed on any device in any context is one of the most powerful

					properties of the buffer abstraction (which this property undoes).

					What Can We Do with a Buffer?

					Many things can be done with buffer objects. We can query characteristics

					of a buffer, determine if and where any data is written back to host memory

					after the buffer is destroyed, or reinterpret a buffer as one with different

					characteristics. One thing that cannot be done, however, is to directly

					access the data that a buffer represents. Instead, we must create accessor

					objects to access the data, and we will learn all about this later in the

					chapter.

					181

					[bookmark: 204_0]
					[bookmark: 204_1]
				

			

		

		
			
				
					Chapter 7 Buffers

					Examples of things that can be queried about a buffer include its range,

					the total number of data elements it represents, and the number of bytes

					required to store its elements. We can also query which allocator object is

					being used by the buffer and whether the buffer is a sub-buffer or not.

					Updating host memory when a buffer is destroyed is an important

					aspect to consider when using buffers. Depending on how a buffer is

					created, host memory may or may not be updated with the results of a

					computation after buffer destruction. If a buffer is created and initialized

					from a host pointer to non-constdata, that same pointer is updated with

					the updated data when the buffer is destroyed. However, there is also a

					way to update host memory regardless of how a buffer was created. The

					set_final_datamethod is a template method of bufferthat can accept

					either a raw pointer, a C++ OutputIterator, or a std::weak_ptr. When

					the buffer is destroyed, data contained by the buffer will be written to the

					host using the supplied location. Note that if the buffer was created and

					initialized from a host pointer to non-constdata, it’s as if set_final_data

					was called with that pointer. Technically, a raw pointer is a special case

					of an OutputIterator. If the parameter passed to set_final_datais a

					std::weak_ptr, the data is not written to the host if the pointer has expired

					or has already been deleted. Whether or not writeback occurs can also be

					controlled by the set_write_backmethod.

					Accessors

					Data represented by a buffer cannot be directly accessed through the

					buffer object. Instead, we must create accessor objects that allow us to

					safely access a buffer’s data. Accessors inform the runtime where and

					how we want to access data, allowing the runtime to ensure that the right

					data is in the right place at the right time. This is a very powerful concept,

					especially when combined with the task graph that schedules kernels for

					execution based in part on data dependences.

					182

					www. dbooks . or g

					[bookmark: 205_0]
					[bookmark: 205_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 7 Buffers

					Accessor objects are instantiated from the templated accessorclass.

					This class has five template parameters. The first parameter is the type

					of the data being accessed. This should be the same as the type of data

					being stored by the corresponding buffer. Similarly, the second parameter

					describes the dimensionality of the data and buffer and defaults to a value

					of one.

					Figure 7-6. Access modes

					The next three template parameters are unique to accessors. The first

					of these is the access mode. The access mode describes how we intend to

					use an accessor in a program. The possible modes are listed in Figure 7-6.

					We will learn how these modes are used to order the execution of kernels

					and perform data movement in Chapter 8. The access mode parameter

					does have a default value if none is specified or automatically inferred. If

					we do not specify otherwise, accessors will default to read_writeaccess

					mode for non-constdata types and readfor constdata types. These

					defaults are always correct, but providing more accurate information

					may improve a runtime’s ability to perform optimizations. When starting

					application development, it is safe and concise to simply not specify an

					access mode, and we can then refine the access modes based on profiling

					of performance-critical regions of the application.

					183

					[bookmark: 206_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 7 Buffers

					Figure 7-7. Access targets

					The next template parameter is the access target. Buffers are an

					abstraction of data and do not describe where and how data is stored. The

					access target describes both what type of data, broadly speaking, we are

					accessing and which memory will contain that data. The possible access

					targets are listed in Figure 7-7. The type of data is one of two types: a buffer

					or an image. Images are discussed in this book, but we can think of them

					as special-purpose buffers that provide domain-specific operations for

					image processing.

					The other aspect of an access target is what we should focus on.

					Devices may have different types of memories available. These memories

					are represented by different address spaces. The most commonly used

					type of memory will be a device’s global memory. Most accessors inside

					kernels will use this target, so global is the default target (if we specify

					nothing). Constant and local buffers use special-purpose memories.

					Constant memory, as its name implies, is used to store values that are

					constant during the lifetime of a kernel invocation. Local memory is

					special memory available to a work-group that is not accessible to other

					work-groups. We will learn how to use local memory in Chapter 9.

					The other target of note is the host buffer, which is the target used

					184

					www. dbooks . or g

					[bookmark: 207_0]
				

			

		

		
			
				
					Chapter 7 Buffers

					when accessing a buffer on the host. The default value for this template

					parameter is global_buffer, so in most cases we do not need to specify a

					target within our code.

					The final template parameter governs whether an accessor is a

					placeholder accessor or not. This is not a parameter that a programmer

					is likely to ever directly set. A placeholder accessor is one that is declared

					outside of a command group but meant to be used to access data on a device

					inside a kernel. We will see what differentiates a placeholder accessor from

					one that is not once we look at examples of accessor creation.

					While accessors can be extracted from a buffer object using its

					get_accessmethod, it’s simpler to directly create (construct) them. This

					is the style we will use in upcoming examples since it is very simple to

					understand and is compact.

					Accessor Creation

					Figure 7-8 shows an example program with everything that we need to get

					started with accessors. In this example, we have three buffers, A, B, and C.

					The first task we submit to the queue creates accessors to each buffer and

					defines a kernel that uses these accessors to initialize the buffers with

					some values. Each accessor is constructed with a reference to the buffer

					it will access as well as the handler object defined by the command group

					we’re submitting to the queue. This effectively binds the accessor to the

					kernel we’re submitting as part of the command group. Regular accessors

					are device accessors since they, by default, target global buffers stored in

					device memory. This is the most common use case.

					185

					[bookmark: 208_0]
					[bookmark: 208_1]
				

			

		

		
			
				
					Chapter 7 Buffers

					constexpr int N = 42;

					queue Q;

					// create 3 buffers of 42 ints

					buffer<int> A{range{N}};

					buffer<int> B{range{N}};

					buffer<int> C{range{N}};

					accessor pC{C};

					Q.submit([&](handler &h) {

					accessor aA{A, h};

					accessor aB{B, h};

					accessor aC{C, h};

					h.parallel_for(N, [=](id<1> i) {

					aA[i] = 1;

					aB[i] = 40;

					aC[i] = 0;

					});

					});

					Q.submit([&](handler &h) {

					accessor aA{A, h};

					accessor aB{B, h};

					accessor aC{C, h};

					h.parallel_for(N, [=](id<1> i) {

					aC[i] += aA[i] + aB[i]; });

					});

					Q.submit([&](handler &h) {

					h.require(pC);

					h.parallel_for(N, [=](id<1> i) {

					pC[i]++; });

					});

					host_accessor result{C};

					for (int i = 0; i < N; i++)

					assert(result[i] == N);

					Figure 7-8. Simple accessor creation

					The second task we submit also defines three accessors to the buffers.

					We then use those accessors in the second kernel to add the elements of

					buffers Aand Binto buffer C. Since this second task operates on the same

					data as the first one, the runtime will execute this task after the first one is

					complete. We will learn about this in detail in the next chapter.

					186

					www. dbooks . or g

					[bookmark: 209_0]
				

			

		

		
			
				
					Chapter 7 Buffers

					The third task shows how we can use a placeholder accessor. The

					accessor pCis declared at the beginning of the example in Figure 7-8 after

					we create our buffers. Note that the constructor is not passed a handler

					object since we don’t have one to pass. This lets us create a reusable

					accessor object ahead of time. However, in order to use this accessor inside

					a kernel, we need to bind it to a command group during submission. We

					do this using the handler object’s requiremethod. Once we have bound

					our placeholder accessor to a command group, we can then use it inside a

					kernel as we would any other accessor.

					Finally, we create a host_accessorobject in order to read the results of

					our computations back on the host. Note that this is a different type than we

					used inside our kernels. Host accessors use a separate host_accessorclass to

					allow proper inference of template arguments, providing a simple interface.

					Note that the host accessor resultin this example also does not take a

					handler object since we once again do not have one to pass. The special

					type for host accessors also lets us disambiguate them from placeholders.

					An important aspect of host accessors is that the constructor only completes

					when the data is available for use on the host, which means that construction

					of a host accessor can appear to take a long time. The constructor must

					wait for any kernels to finish executing that produce the data to be copied

					as well as for the copy itself to finish. Once the host accessor construction is

					complete, it is safe to use the data that it accesses directly on the host, and we

					are guaranteed that the latest version of the data is available to us on the host.

					While this example is perfectly correct, we don’t say anything about

					how we intend to use our accessors when we create them. Instead, we

					use the default access mode, which is read-write, for the non-const

					intdata in our buffers. This is potentially overconservative and may

					create unnecessary dependences between operations or superfluous

					data movement. A runtime may be able to do a better job if it has more

					information about how we plan to use the accessors we create. However,

					before we go through an example where we do this, we should first

					introduce one more tool—the access tag.

					187

				

			

		

		
			
				
					
				
			

			
				
					Chapter 7 Buffers

					Access tags are a compact way to express the desired combination

					of access mode and target for an accessor. Access tags, when used, are

					passed as a parameter to an accessor’s constructor. The possible tags

					are shown in Figure 7-9. When an accessor is constructed with a tag

					parameter, C++ CTAD can then properly deduce the desired access mode

					and target, providing an easy way to override the default values for those

					template parameters. We could also manually specify the desired template

					parameters, but tags provide a simpler, more compact way to get the same

					result without spelling out fully templated accessors.

					mode_tag_t

					mode_tag_t

					mode_tag_t

					Figure 7-9. Access tags

					Let’s take our previous example and rewrite it to add access tags. This

					new and improved example is shown in Figure 7-10.

					188

					www. dbooks . or g

					[bookmark: 211_0]
				

			

		

		
			
				
					Chapter 7 Buffers

					constexpr int N = 42;

					queue Q;

					// Create 3 buffers of 42 ints

					buffer<int> A{range{N}};

					buffer<int> B{range{N}};

					buffer<int> C{range{N}};

					accessor pC{C};

					Q.submit([&](handler &h) {

					accessor aA{A, h, write_only, noinit};

					accessor aB{B, h, write_only, noinit};

					accessor aC{C, h, write_only, noinit};

					h.parallel_for(N, [=](id<1> i) {

					aA[i] = 1;

					aB[i] = 40;

					aC[i] = 0;

					});

					});

					Q.submit([&](handler &h) {

					accessor aA{A, h, read_only};

					accessor aB{B, h, read_only};

					accessor aC{C, h, read_write};

					h.parallel_for(N, [=](id<1> i) {

					aC[i] += aA[i] + aB[i]; });

					});

					Q.submit([&](handler &h) {

					h.require(pC);

					h.parallel_for(N, [=](id<1> i) {

					pC[i]++; });

					});

					host_accessor result{C, read_only};

					for (int i = 0; i < N; i++)

					assert(result[i] == N);

					Figure 7-10. Accessor creation with specified usage

					We begin by declaring our buffers as we did in Figure 7-8. We also

					create our placeholder accessor that we’ll use later. Let’s now look at the

					first task we submit to the queue. Previously, we created our accessors by

					passing a reference to a buffer and the handler object for the command

					group. Now, we add two extra parameters to our constructor calls. The

					first new parameter is an access tag. Since this kernel is writing the initial

					189

					[bookmark: 212_0]
				

			

		

		
			
				
					Chapter 7 Buffers

					values for our buffers, we use the write_onlyaccess tag. This lets the

					runtime know that this kernel is producing new data and will not read

					from the buffer.

					The second new parameter is an optional accessor property, similar to

					the optional properties for buffers that we saw earlier in the chapter. The

					property we pass, noinit, lets the runtime know that the previous contents

					of the buffer can be discarded. This is useful because it can let the runtime

					eliminate unnecessary data movement. In this example, since the first task

					is writing the initial values for our buffers, it’s unnecessary for the runtime

					to copy the uninitialized host memory to the device before the kernel

					executes. The noinitproperty is useful for this example, but it should not

					be used for read-modify-write cases or kernels where only some values in

					a buffer may be updated.

					The second task we submit to our queue is identical to before, but

					now we add access tags to our accessors. Here, we add the tags read_only

					to accessors aAand aBto let the runtime know that we will only read the

					values of buffers Aand Bthrough these accessors. The third accessor,

					aC, gets the read_writeaccess tag since we accumulate the sum of the

					elements of Aand Binto C. We explicitly use the tag in the example to be

					consistent, but this is unnecessary since the default access mode is read_

					write.

					The default usage is retained in the third task where we use our

					placeholder accessor. This remains unchanged from the simplified

					example we saw in Figure 7-8. Our final accessor, the host accessor result,

					now receives an access tag when we create it. Since we only read the final

					values on the host, we pass the read_onlytag to the constructor. If we

					rewrote the program in such a way that the host accessor was destroyed,

					launching another kernel that operated on buffer Cwould not require it

					to be written back to the device since the read_onlytag lets the runtime

					know that it will not be modified by the host.

					190

					www. dbooks . or g

				

			

		

		
			
				
					Chapter 7 Buffers

					What Can We Do with an Accessor?

					Many things can be done with an accessor object. However, the most

					important thing we can do is spelled out in the accessor’s name—access

					data. This is usually done through one of the accessor’s []operators. We

					use the []operator in our examples in Figures 7-8 and 7-10. This operator

					takes either an idobject that can properly index multidimensional data or

					a single size_t. The second case is used when an accessor has more than

					one dimension. It returns an object that is then meant to be indexed again

					with []until we arrive at a scalar value, and this would be of the form a[i]

					[j]in a two-dimensional case. Remember that the ordering of accessor

					dimensions follows the convention of C++ where the rightmost dimension

					is the unit-stride dimension (iterates “fastest”).

					An accessor can also return a pointer to the underlying data. This

					pointer can be accessed directly following normal C++ rules. Note that

					there can be additional complexity involved with respect to the address

					space of this pointer. Address spaces and their quirks will be discussed in a

					later chapter.

					Many things can also be queried from an accessor object. Examples

					include the number of elements accessible through the accessor, the size

					in bytes of the region of the buffer it covers, or the range of data accessible.

					Accessors provide a similar interface to C++ containers and may be

					used in many situations where containers may be passed. The container

					interface supported by accessors includes the datamethod, which is

					equivalent to get_pointer, and several flavors of forward and backward

					iterators.

					191

					[bookmark: 214_0]
				

			

		

		
			
				
					Chapter 7 Buffers

					Summary

					In this chapter, we have learned about buffers and accessors. Buffers

					are an abstraction of data that hides the underlying details of memory

					management from the programmer. They do this in order to provide a

					simpler, higher-level abstraction. We went through several examples that

					showed us the different ways to construct buffers as well as the different

					optional properties that can be specified to alter their behavior. We learned

					how to initialize a buffer with data from host memory as well as how to

					write data back to host memory when we are done with a buffer.

					Since we should not access buffers directly, we learned how to access

					the data in a buffer by using accessor objects. We learned the difference

					between device accessors and host accessors. We discussed the different

					access modes and targets and how they inform the runtime how and

					where an accessor will be used by the program. We showed the simplest

					way to use accessors using the default access modes and targets, and we

					learned how to distinguish between a placeholder accessor and one that is

					not. We then saw how to further optimize the example program by giving

					the runtime more information about our accessor usage by adding access

					tags to our accessor declarations. Finally, we covered many of the different

					ways that accessors can be used in a program.

					In the next chapter, we will learn in greater detail how the runtime can

					use the information we give it through accessors to schedule the execution

					of different kernels. We will also see how this information informs the

					runtime about when and how the data in buffers needs to be copied

					between the host and a device. We will learn how we can explicitly control

					data movement involving buffers—and USM allocations too.

					192

					www. dbooks . or g

					[bookmark: 215_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 7 Buffers

					Open Access This chapter is licensed under the terms

					of the Creative Commons Attribution 4.0 International

					License (http://creativecommons.org/licenses/by/4.0/), which permits

					use, sharing, adaptation, distribution and reproduction in any medium or

					format, as long as you give appropriate credit to the original author(s) and

					the source, provide a link to the Creative Commons license and indicate if

					changes were made.

					The images or other third party material in this chapter are included

					in the chapter’s Creative Commons license, unless indicated otherwise

					in a credit line to the material. If material is not included in the chapter’s

					Creative Commons license and your intended use is not permitted by

					statutory regulation or exceeds the permitted use, you will need to obtain

					permission directly from the copyright holder.

					193

				

			

		

		
			
				
					
				
			

			
				
					CHAPTER 8

					Scheduling Kernels

					and Data Movement

					We need to discuss our role as the concert master for our parallel

					programs. The proper orchestration of a parallel program is a thing of

					beauty—code running full speed without waiting for data, because we

					have arranged for all data to arrive and depart at the proper times. Code

					well-decomposed to keep the hardware maximally busy. It is the thing that

					dreams are made of!

					Life in the fast lanes—not just one lane!—demands that we take our

					work as the conductor seriously. In order to do that, we can think of our

					job in terms of task graphs.

					© Intel Corporation 2021

					J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-5574-2_8

					195

					www. dbooks . or g

					[bookmark: 217_0]
				

			

		

		
			
				
					Chapter 8 SCheduling KernelS and data MoveMent

					Therefore, in this chapter, we will cover task graphs, the mechanism

					that is used to run complex sequences of kernels correctly and efficiently.

					There are two things that need sequencing in an application: kernels and

					data movement. Task graphs are the mechanism that we use to achieve

					proper sequencing.

					First, we will quickly review how we can use dependences to order

					tasks from Chapter 3. Next, we will cover how the DPC++ runtime builds

					graphs. We will discuss the basic building block of DPC++ graphs, the

					command group. We will then illustrate the different ways we can build

					graphs of common patterns. We will also discuss how data movement,

					both explicit and implicit, is represented in graphs. Finally, we will discuss

					the various ways to synchronize our graphs with the host.

					What Is Graph Scheduling?

					In Chapter 3, we discussed data management and ordering the uses of

					data. That chapter described the key abstraction behind graphs in DPC++:

					dependences. Dependences between kernels are fundamentally based on

					what data a kernel accesses. A kernel needs to be certain that it reads the

					correct data before it can compute its output.

					We described the three types of data dependences that are important

					for ensuring correct execution. The first, Read-after-Write (RAW), occurs

					when one task needs to read data produced by a different task. This type of

					dependence describes the flow of data between two kernels. The second

					type of dependence happens when one task needs to update data after

					another task has read it. We call that type of dependence a Write-after-

					Read (WAR) dependence. The final type of data dependence occurs when

					two tasks try to write the same data. This is known as a Write-after-Write

					(WAW) dependence.

					196

					[bookmark: 218_0]
					[bookmark: 218_1]
				

			

		

		
			
				
					Chapter 8 SCheduling KernelS and data MoveMent

					Data dependences are the building blocks we will use to build graphs.

					This set of dependences is all we need to express both simple linear

					chains of kernels and large, complex graphs with hundreds of kernels with

					elaborate dependences. No matter which types of graph a computation

					needs, DPC++ graphs ensure that a program will execute correctly based

					on the expressed dependences. However, it is up to the programmer

					to make sure that a graph correctly expresses all the dependences in a

					program.

					How Graphs Work in DPC++

					A command group can contain three different things: an action, its

					dependences, and miscellaneous host code. Of these three things, the

					one that is always required is the action since without it, the command

					group really doesn’t do anything. Most command groups will also express

					dependences, but there are cases where they may not. One such example

					is the first action submitted in a program. It does not depend on anything

					to begin execution; therefore, we would not specify any dependence. The

					other thing that can appear inside a command group is arbitrary C++ code

					that executes on the host. This is perfectly legal and can be useful to help

					specify the action or its dependences, and this code is executed while the

					command group is created (not later when the action is performed based

					on dependences having been met).

					Command groups are typically expressed as a C++ lambda expression

					passed to the submit method. Command groups can also be expressed

					through shortcut methods on queue objects that take a kernel and set of

					event-based dependences.

					197

					www. dbooks . or g

					[bookmark: 219_0]
				

			

		

		
			
				
					Chapter 8 SCheduling KernelS and data MoveMent

					Command Group Actions

					There are two types of actions that may be performed by a command

					group: kernels and explicit memory operations. A command group may

					only perform a single action. As we’ve seen in earlier chapters, kernels

					are defined through calls to a parallel_foror single_taskmethod and

					express computations that we want to perform on our devices. Operations

					for explicit data movement are the second type of action. Examples from

					USM include memcpy, memset, and filloperations. Examples from buffers

					include copy, fill, and update_host.

					How Command Groups Declare Dependences

					The other main component of a command group is the set of dependences

					that must be satisfied before the action defined by the group can execute.

					DPC++ allows these dependences to be specified in several ways.

					If a program uses in-order DPC++ queues, the in-order semantics of

					the queue specify implicit dependences between successively enqueued

					command groups. One task cannot execute until the previously submitted

					task has completed.

					Event-based dependences are another way to specify what must be

					complete before a command group may execute. These event-based

					dependences may be specified in two ways. The first way is used when

					a command group is specified as a lambda passed to a queue’s submit

					method. In this case, the programmer invokes the depends_onmethod

					of the command group handler object, passing either an event or vector

					of events as parameter. The other way is used when a command group is

					created from the shortcut methods defined on the queue object. When the

					programmer directly invokes parallel_foror single_taskon a queue, an

					event or vector of events may be passed as an extra parameter.

					198

					[bookmark: 220_0]
					[bookmark: 220_1]
					[bookmark: 220_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 8 SCheduling KernelS and data MoveMent

					The last way that dependences may be specified is through the creation

					of accessor objects. Accessors specify how they will be used to read or

					write data in a buffer object, letting the runtime use this information to

					determine the data dependences that exist between different kernels.

					As we reviewed in the beginning of this chapter, examples of data

					dependences include one kernel reading data that another produces, two

					kernels writing the same data, or one kernel modifying data after another

					kernel reads it.

					Examples

					Now we will illustrate everything we’ve just learned with several examples.

					We will present how one might express two different dependence patterns

					in several ways. The two patterns we will illustrate are linear dependence

					chains where one task executes after another and a “Y” pattern where two

					independent tasks must execute before successive tasks.

					Graphs for these dependence patterns can be seen in Figures 8-1

					and 8-2. Figure 8-1 depicts a linear dependence chain. The first node

					represents the initialization of data, while the second node presents the

					reduction operation that will accumulate the data into a single result.

					Figure 8-2 depicts a “Y” pattern where we independently initialize two

					different pieces of data. After the data is initialized, an addition kernel

					will sum the two vectors together. Finally, the last node in the graph

					accumulates the result into a single value.

					Figure 8-1. Linear dependence chain graph

					199

					www. dbooks . or g

					[bookmark: 221_0]
					[bookmark: 221_1]
					[bookmark: 221_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 8 SCheduling KernelS and data MoveMent

					For each pattern, we will show three different implementations.

					The first implementation will use in-order queues. The second will use

					event-based dependences. The last implementation will use buffers and

					accessors to express data dependences between command groups.

					Figure 8-2. “Y” pattern dependence graph

					constexpr int N = 42;

					queue Q{property::queue::in_order()};

					int *data = malloc_shared<int>(N, Q);

					Q.parallel_for(N, [=](id<1> i) { data[i] = 1; });

					Q.single_task([=]() {

					for (int i = 1; i < N; i++)

					data[0] += data[i];

					});

					Q.wait();

					assert(data[0] == N);

					Figure 8-3. Linear dependence chain with in-order queues

					200

					[bookmark: 222_0]
					[bookmark: 222_1]
				

			

		

		
			
				
					Chapter 8 SCheduling KernelS and data MoveMent

					Figure 8-3 shows how to express a linear dependence chain using

					in-order queues. This example is very simple because the semantics of in-

					order queues already guarantee a sequential order of execution between

					command groups. The first kernel we submit initializes the elements of

					an array to 1. The next kernel then takes those elements and sums them

					together into the first element. Since our queue is in order, we do not need

					to do anything else to express that the second kernel should not execute

					until the first kernel has completed. Finally, we wait for the queue to finish

					executing all its tasks, and we check that we obtained the expected result.

					constexpr int N = 42;

					queue Q;

					int *data = malloc_shared<int>(N, Q);

					auto e = Q.parallel_for(N, [=](id<1> i) { data[i] = 1; });

					Q.submit([&](handler &h) {

					h.depends_on(e);

					h.single_task([=]() {

					for (int i = 1; i < N; i++)

					data[0] += data[i];

					});

					});

					Q.wait();

					assert(data[0] == N);

					Figure 8-4. Linear dependence chain with events

					Figure 8-4 shows the same example using an out-of-order queue

					and event-based dependences. Here, we capture the event returned by

					the first call to parallel_for. The second kernel is then able to specify

					a dependence on that event and the kernel execution it represents by

					passing it as a parameter to depends_on. We will see in Figure 8-6 how

					we could shorten the expression of the second kernel using one of the

					shortcut methods for defining kernels.

					201

					www. dbooks . or g

					[bookmark: 223_0]
				

			

		

		
			
				
					Chapter 8 SCheduling KernelS and data MoveMent

					constexpr int N = 42;

					queue Q;

					buffer<int> data{range{N}};

					Q.submit([&](handler &h) {

					accessor a{data, h};

					h.parallel_for(N, [=](id<1> i) { a[i] = 1; });

					});

					Q.submit([&](handler &h) {

					accessor a{data, h};

					h.single_task([=]() {

					for (int i = 1; i < N; i++)

					a[0] += a[i];

					});

					});

					host_accessor h_a{data};

					assert(h_a[0] == N);

					Figure 8-5. Linear dependence chain with buffers and accessors

					Figure 8-5 rewrites our linear dependence chain example using buffers

					and accessors instead of USM pointers. Here we once again use an out-

					of-order queue but use data dependences specified through accessors

					instead of event-based dependences to order the execution of the

					command groups. The second kernel reads the data produced by the first

					kernel, and the runtime can see this because we declare accessors based

					on the same underlying buffer object. Unlike the previous examples, we do

					not wait for the queue to finish executing all its tasks. Instead, we declare

					a host accessor that defines a data dependence between the output of the

					second kernel and our assertion that we computed the correct answer on

					the host. Note that while a host accessor gives us an up-to-date view of

					data on the host, it does not guarantee that the original host memory has

					been updated if any was specified when the buffer was created. We can’t

					safely access the original host memory unless the buffer is first destroyed

					or unless we use a more advanced mechanism like the mutex mechanism

					described in Chapter 7.

					202

					[bookmark: 224_0]
				

			

		

		
			
				
					Chapter 8 SCheduling KernelS and data MoveMent

					constexpr int N = 42;

					queue Q{property::queue::in_order()};

					int *data1 = malloc_shared<int>(N, Q);

					int *data2 = malloc_shared<int>(N, Q);

					Q.parallel_for(N, [=](id<1> i) { data1[i] = 1; });

					Q.parallel_for(N, [=](id<1> i) { data2[i] = 2; });

					Q.parallel_for(N, [=](id<1> i) { data1[i] += data2[i]; });

					Q.single_task([=]() {

					for (int i = 1; i < N; i++)

					data1[0] += data1[i];

					data1[0] /= 3;

					});

					Q.wait();

					assert(data1[0] == N);

					Figure 8-6. “Y” pattern with in-order queues

					Figure 8-6 shows how to express a “Y” pattern using in-order queues.

					In this example, we declare two arrays, data1and data2. We then define

					two kernels that will each initialize one of the arrays. These kernels do not

					depend on each other, but because the queue is in order, the kernels must

					execute one after the other. Note that it would be perfectly legal to swap

					the order of these two kernels in this example. After the second kernel has

					executed, the third kernel adds the elements of the second array to those

					of the first array. The final kernel sums up the elements of the first array

					to compute the same result we did in our examples for linear dependence

					chains. This summation kernel depends on the previous kernel, but this

					linear chain is also captured by the in-order queue. Finally, we wait for all

					kernels to complete and validate that we successfully computed our magic

					number.

					203

					www. dbooks . or g

					[bookmark: 225_0]
				

			

		

		
			
				
					Chapter 8 SCheduling KernelS and data MoveMent

					constexpr int N = 42;

					queue Q;

					int *data1 = malloc_shared<int>(N, Q);

					int *data2 = malloc_shared<int>(N, Q);

					auto e1 = Q.parallel_for(N,

					[=](id<1> i) { data1[i] = 1; });

					auto e2 = Q.parallel_for(N,

					[=](id<1> i) { data2[i] = 2; });

					auto e3 = Q.parallel_for(range{N}, {e1, e2},

					[=](id<1> i) { data1[i] += data2[i]; });

					Q.single_task(e3, [=]() {

					for (int i = 1; i < N; i++)

					data1[0] += data1[i];

					data1[0] /= 3;

					});

					Q.wait();

					assert(data1[0] == N);

					Figure 8-7. “Y” pattern with events

					Figure 8-7 shows our “Y” pattern example with out-of-order queues

					instead of in-order queues. Since the dependences are no longer implicit

					due to the order of the queue, we must explicitly specify the dependences

					between command groups using events. As in Figure 8-6, we begin by

					defining two independent kernels that have no initial dependences. We

					represent these kernels by two events, e1and e2. When we define our

					third kernel, we must specify that it depends on the first two kernels. We

					do this by saying that it depends on events e1and e2to complete before it

					may execute. However, in this example, we use a shortcut form to specify

					these dependences instead of the handler’s depends_onmethod. Here, we

					pass the events as an extra parameter to parallel_for. Since we want to

					pass multiple events at once, we use the form that accepts a std::vector

					of events, but luckily modern C++ simplifies this for us by automatically

					converting the expression {e1, e2}into the appropriate vector.

					204

					[bookmark: 226_0]
				

			

		

		
			
				
					Chapter 8 SCheduling KernelS and data MoveMent

					constexpr int N = 42;

					queue Q;

					buffer<int> data1{range{N}};

					buffer<int> data2{range{N}};

					Q.submit([&](handler &h) {

					accessor a{data1, h};

					h.parallel_for(N, [=](id<1> i) { a[i] = 1; });

					});

					Q.submit([&](handler &h) {

					accessor b{data2, h};

					h.parallel_for(N, [=](id<1> i) { b[i] = 2; });

					});

					Q.submit([&](handler &h) {

					accessor a{data1, h};

					accessor b{data2, h, read_only};

					h.parallel_for(N, [=](id<1> i) { a[i] += b[i]; });

					});

					Q.submit([&](handler &h) {

					accessor a{data1, h};

					h.single_task([=]() {

					for (int i = 1; i < N; i++)

					a[0] += a[i];

					a[0] /= 3;

					});

					});

					host_accessor h_a{data1};

					assert(h_a[0] == N);

					Figure 8-8. “Y” pattern with accessors

					In our final example, seen in Figure 8-8, we again replace USM pointers

					and events with buffers and accessors. This example represents the two

					arrays data1and data2as buffer objects. Our kernels no longer use the

					shortcut methods for defining kernels since we must associate accessors

					with a command group handler. Once again, the third kernel must capture

					the dependence on the first two kernels. Here this is accomplished by

					declaring accessors for our buffers. Since we have previously declared

					accessors for these buffers, the runtime is able to properly order the

					execution of these kernels. Additionally, we also provide extra information

					to the runtime here when we declare accessor b. We add the access tag

					205

					www. dbooks . or g

					[bookmark: 227_0]
				

			

		

		
			
				
					Chapter 8 SCheduling KernelS and data MoveMent

					read_onlyto let the runtime know that we’re only going to read this data,

					not produce new values. As we saw in our buffer and accessor example

					for linear dependence chains, our final kernel orders itself by updating

					the values produced in the third kernel. We retrieve the final value of our

					computation by declaring a host accessor that will wait for the final kernel

					to finish executing before moving the data back to the host where we can

					read it and assert we computed the correct result.

					When Are the Parts of a CG Executed?

					Since task graphs are asynchronous, it makes sense to wonder when

					exactly command groups are executed. By now, it should be clear that

					kernels may be executed as soon as their dependences have been satisfied,

					but what happens with the host portion of a command group?

					When a command group is submitted to a queue, it is executed

					immediately on the host (before the submitcall returns). This host portion

					of the command group is executed only once. Any kernel or explicit data

					operation defined in the command group is enqueued for execution on the

					device.

					Data Movement

					Data movement is another very important aspect of graphs in DPC++ that

					is essential for understanding application performance. However, it can

					often be accidentally overlooked if data movement happens implicitly

					in a program, either using buffers and accessors or using USM shared

					allocations. Next, we will examine the different ways that data movement

					can affect graph execution in DPC++.

					206

					[bookmark: 228_0]
					[bookmark: 228_1]
					[bookmark: 228_2]
				

			

		

		
			
				
					Chapter 8 SCheduling KernelS and data MoveMent

					Explicit

					Explicit data movement has the advantage that it appears explicitly in a

					graph, making it obvious for programmers what goes on within execution

					of a graph. We will separate explicit data operations into those for USM

					and those for buffers.

					As we learned in Chapter 6, explicit data movement in USM occurs

					when we need to copy data between device allocations and the host. This

					is done with the memcpymethod, found in both the queue and handler

					classes. Submitting the action or command group returns an event that

					can be used to order the copy with other command groups.

					Explicit data movement with buffers occurs by invoking either the

					copyor update_hostmethod of the command group handler object.

					The copymethod can be used to manually exchange data between host

					memory and an accessor object on a device. This can be done for a

					variety of reasons. A simple example is checkpointing a long-running

					sequence of computations. With the copy method, data can be written

					from the device to arbitrary host memory in a one-way fashion. If

					this were done using buffers, most cases (i.e., those where the buffer

					was not created with use_host_ptr) would require the data to first be

					copied to the host and then from the buffer’s memory to the desired

					host memory.

					The update_hostmethod is a very specialized form of copy. If a

					buffer was created around a host pointer, this method will copy the data

					represented by the accessor back to the original host memory. This can be

					useful if a program manually synchronizes host data with a buffer that was

					created with the special use_mutexproperty. However, this use case is not

					likely to occur in most programs.

					207

					www. dbooks . or g

					[bookmark: 229_0]
					[bookmark: 229_1]
				

			

		

		
			
				
					Chapter 8 SCheduling KernelS and data MoveMent

					Implicit

					Implicit data movement can have hidden consequences for command

					groups and task graphs in DPC++. With implicit data movement, data is

					copied between host and device either by the DPC++ runtime or by some

					combination of hardware and software. In either case, copying occurs

					without explicit input from the user. Let’s again look separately at the USM

					and buffer cases.

					With USM, implicit data movement occurs with hostand shared

					allocations. As we learned in Chapter 6, hostallocations do not really

					move data so much as access it remotely, and sharedallocations

					may migrate between host and device. Since this migration happens

					automatically, there is really nothing to think about with USM implicit data

					movement and command groups. However, there are some nuances with

					sharedallocations worth keeping in mind.

					The prefetchoperation works in a similar fashion to memcpyin

					order to let the runtime begin migrating shared allocations before a

					kernel attempts to use them. However, unlike memcpywhere data must

					be copied in order to ensure correct results, prefetches are often treated

					as hints to the runtime to increase performance, and prefetches do not

					invalidate pointer values in memory (as a copy would when copying to a

					new address range). The program will still execute correctly if a prefetch

					has not completed before a kernel begins executing, and so many codes

					may choose to make command groups in a graph not depend on prefetch

					operations since they are not a functional requirement.

					Buffers also carry some nuance. When using buffers, command groups

					must construct accessors for buffers that specify how the data will be used.

					These data dependences express the ordering between different command

					groups and allow us to construct task graphs. However, command groups

					with buffers sometimes fill another purpose: they specify the requirements

					on data movement.

					208

					[bookmark: 230_0]
					[bookmark: 230_1]
				

			

		

		
			
				
					Chapter 8 SCheduling KernelS and data MoveMent

					Accessors specify that a kernel will read or write to a buffer. The

					corollary from this is that the data must also be available on the device,

					and if it is not, the runtime must move it there before the kernel may begin

					executing. Consequently, the DPC++ runtime must keep track of where the

					current version of a buffer resides so that data movement operations can

					be scheduled. Accessor creation effectively creates an extra, hidden node

					in the graph. If data movement is necessary, the runtime must perform it

					first. Only then may the kernel being submitted execute.

					Let us take another look at Figure 8-8. In this example, our first two

					kernels will require buffers data1and data2to be copied to the device;

					the runtime implicitly creates extra graph nodes to perform the data

					movement. When the third kernel’s command group is submitted, it is

					likely that these buffers will still be on the device, so the runtime will not

					need to perform any extra data movement. The fourth kernel’s data is also

					likely to not require any extra data movement, but the creation of the host

					accessor requires the runtime to schedule a movement of buffer data1

					back to the host before the accessor is available for use.

					Synchronizing with the Host

					The last topic we will discuss is how to synchronize graph execution with

					the host. We have already touched on this throughout the chapter, but we

					will now examine all the different ways a program can do this.

					The first method for host synchronization is one we’ve used in many

					of our previous examples: waiting on a queue. Queue objects have two

					methods, waitand wait_and_throw, that block execution until every

					command group that was submitted to the queue has completed. This is

					a very simple method that handles many common cases. However, it is

					worth pointing out that this method is very coarse-grained. If finer-grained

					synchronization is desired, one of the other approaches we will discuss

					may be better suit an application’s needs.

					209

					www. dbooks . or g

					[bookmark: 231_0]
					[bookmark: 231_1]
				

			

		

		
			
				
					Chapter 8 SCheduling KernelS and data MoveMent

					The next method for host synchronization is to synchronize on events.

					This gives more flexibility over synchronizing on a queue since it lets an

					application only synchronize on specific actions or command groups. This

					is done by either invoking the waitmethod on an event or invoking the

					static method waiton the event class, which can accept a vector of events.

					We have seen the next method used in Figures 8-5 and 8-8: host

					accessors. Host accessors perform two functions. First, they make data

					available for access on the host, as their name implies. Second, they

					synchronize with the host by defining a new dependence between the

					currently accessing graph and the host. This ensures that the data that

					gets copied back to the host is the correct value of the computation the

					graph was performing. However, we once again note that if the buffer

					was constructed from existing host memory, this original memory is not

					guaranteed to contain the updated values.

					Note that host accessors are blocking. Execution on the host may not

					proceed past the creation of the host accessor until the data is available.

					Likewise, a buffer cannot be used on a device while a host accessor exists

					and keeps its data available. A common pattern is to create host accessors

					inside additional C++ scopes in order to free the data once the host

					accessor is no longer needed. This is an example of the next method for

					host synchronization.

					Certain objects in DPC++ have special behaviors when they are

					destroyed, and their destructors are invoked. We just learned how host

					accessors can make data remain on the host until they are destroyed.

					Buffers and images also have special behavior when they are destroyed or

					leave scope. When a buffer is destroyed, it waits for all command groups

					that use that buffer to finish execution. Once a buffer is no longer being

					used by any kernel or memory operation, the runtime may have to copy

					data back to the host. This copy occurs either if the buffer was initialized

					with a host pointer or if a host pointer was passed to the method set_

					final_data. The runtime will then copy back the data for that buffer and

					update the host pointer before the object is destroyed.

					210

				

			

		

		
			
				
					Chapter 8 SCheduling KernelS and data MoveMent

					The final option for synchronizing with the host involves an

					uncommon feature first described in Chapter 7. Recall that the

					constructors for buffer objects optionally take a property list. One of the

					valid properties that may be passed when creating a buffer is use_mutex.

					When a buffer is created in this fashion, it adds the requirement that the

					memory owned by the buffer can be shared with the host application.

					Access to this memory is governed by the mutex used to initialize the

					buffer. The host is able to obtain the lock on the mutex when it is safe

					to access the memory shared with the buffer. If the lock cannot be

					obtained, the user may need to enqueue memory movement operations

					to synchronize the data with the host. This use is very specialized and

					unlikely to be found in the majority of DPC++ applications.

					Summary

					In this chapter, we have learned about graphs and how they are built,

					scheduled, and executed in DPC++. We went into detail on what command

					groups are and what function they serve. We discussed the three things

					that can be within a command group: dependences, an action, and

					miscellaneous host code. We reviewed how to specify dependences

					between tasks using events as well as through data dependences described

					by accessors. We learned that the single action in a command group may

					be either a kernel or an explicit memory operation, and we then looked

					at several examples that showed the different ways we can construct

					common execution graph patterns. Next, we reviewed how data movement

					is an important part of DPC++ graphs, and we learned how it can appear

					either explicitly or implicitly in a graph. Finally, we looked at all the ways to

					synchronize the execution of a graph with the host.

					Understanding the program flow can enable us to understand the sort

					of debug information that can be printed if we have runtime failures to

					debug. Chapter 13 has a table in the section “Debugging Runtime Failures”

					211

					www. dbooks . or g

					[bookmark: 233_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 8 SCheduling KernelS and data MoveMent

					that will make a little more sense given the knowledge we have gained

					by this point in the book. However, this book does not attempt to discuss

					these advanced compiler dumps in detail.

					Hopefully this has left you feeling like a graph expert who can

					construct graphs that range in complexity from linear chains to enormous

					graphs with hundreds of nodes and complex data and task dependences!

					In the next chapter, we’ll begin to dive into low-level details that are useful

					for improving the performance of an application on a specific device.

					Open Access This chapter is licensed under the terms

					of the Creative Commons Attribution 4.0 International

					License (http://creativecommons.org/licenses/by/4.0/), which permits

					use, sharing, adaptation, distribution and reproduction in any medium or

					format, as long as you give appropriate credit to the original author(s) and

					the source, provide a link to the Creative Commons license and indicate if

					changes were made.

					The images or other third party material in this chapter are included

					in the chapter’s Creative Commons license, unless indicated otherwise

					in a credit line to the material. If material is not included in the chapter’s

					Creative Commons license and your intended use is not permitted by

					statutory regulation or exceeds the permitted use, you will need to obtain

					permission directly from the copyright holder.

					212

				

			

		

		
			
				
					
				
			

			
				
					CHAPTER 9

					Communication and

					Synchronization

					In Chapter 4, we discussed ways to express parallelism, either using basic

					data-parallel kernels, explicit ND-range kernels, or hierarchical parallel

					kernels. We discussed how basic data-parallel kernels apply the same

					operation to every piece of data independently. We also discussed how

					explicit ND-range kernels and hierarchical parallel kernels divide the

					execution range into work-groups of work-items.

					In this chapter, we will revisit the question of how to break up a

					problem into bite-sized chunks in our continuing quest to Think Parallel.

					This chapter provides more detail regarding explicit ND-range kernels and

					hierarchical parallel kernels and describes how groupings of work-items

					may be used to improve the performance of some types of algorithms. We

					will describe how groups of work-items provide additional guarantees for

					© Intel Corporation 2021

					J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-5574-2_9

					213

					www. dbooks . or g

					[bookmark: 235_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 9 CommuniCation and SynChronization

					how parallel work is executed, and we will introduce language features that

					support groupings of work-items. Many of these ideas and concepts will be

					important when optimizing programs for specific devices in Chapters 15,

					16, and 17 and to describe common parallel patterns in Chapter 14.

					Work-Groups and Work-Items

					Recall from Chapter 4 that explicit ND-range and hierarchical parallel kernels

					organize work-items into work-groups and that the work-items in a work-

					group are guaranteed to execute concurrently. This property is important,

					because when work-items are guaranteed to execute concurrently, the work-

					items in a work-group can cooperate to solve a problem.

					Figure 9-1. Two-dimensional ND-range of size (8, 8) divided into

					four work-groups of size (4,4)

					Figure 9-1 shows an ND-range divided into work-groups, where each

					work-group is represented by a different color. The work-items in each

					work-group are guaranteed to execute concurrently, so a work-item may

					communicate with other work-items that share the same color.

					214

					[bookmark: 236_0]
					[bookmark: 236_1]
					[bookmark: 236_2]
				

			

		

		
			
				
					Chapter 9 CommuniCation and SynChronization

					Because the work-items in different work-groups are not guaranteed

					to execute concurrently, a work-item with one color cannot reliably

					communicate with a work-item with a different color, and a kernel may

					deadlock if one work-item attempts to communicate with another work-

					item that is not currently executing. Since we want our kernels to complete

					execution, we must ensure that when one work-item communicates with

					another work-item, they are in the same work-group.

					Building Blocks for Efficient Communication

					This section describes building blocks that support efficient

					communication between work-items in a group. Some are fundamental

					building blocks that enable construction of custom algorithms, whereas

					others are higher level and describe common operations used by many

					kernels.

					Synchronization via Barriers

					The most fundamental building block for communication is the barrier

					function. The barrier function serves two key purposes:

					First, the barrier function synchronizes execution of work-items in

					a group. By synchronizing execution, one work-item can ensure that

					another work-item has completed an operation before using the result of

					that operation. Alternatively, one work-item is given time to complete its

					operation before another work-item uses the result of the operation.

					Second, the barrier function synchronizes how each work-item views

					the state of memory. This type of synchronization operation is known

					as enforcing memory consistency or fencing memory (more details in

					Chapter 19). Memory consistency is at least as important as synchronizing

					execution since it ensures that the results of memory operations

					215

					www. dbooks . or g

					[bookmark: 237_0]
					[bookmark: 237_1]
					[bookmark: 237_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 9 CommuniCation and SynChronization

					performed before the barrier are visible to other work-items after the

					barrier. Without memory consistency, an operation in one work-item is

					like a tree falling in a forest, where the sound may or may not be heard by

					other work-items!

					Figure 9-2 shows four work-items in a group that synchronize at a

					barrier function. Even though the execution time for each work-item may

					differ, no work-items can execute past the barrier until all work-items

					execute the barrier. After executing the barrier function, all work-items

					have a consistent view of memory.

					Figure 9-2. Four work-items in a group synchronize at a barrier

					function

					216

					[bookmark: 238_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 9 CommuniCation and SynChronization

					WHY ISN’T MEMORY CONSISTENT BY DEFAULT?

					For many programmers, the idea of memory consistency—and that different

					work-items can have different views of memory—can feel very strange.

					Wouldn’t it be easier if all memory was consistent for all work-items by

					default? the short answer is that it would, but it would also be very expensive

					to implement. By allowing work-items to have inconsistent views of memory

					and only requiring memory consistency at defined points during program

					execution, accelerator hardware may be cheaper, may perform better, or both.

					Because barrier functions synchronize execution, it is critically

					important that either all work-items in the group execute the barrier or

					no work-items in the group execute the barrier. If some work-items in the

					group branch around any barrier function, the other work-items in the

					group may wait at the barrier forever—or at least until the user gives up

					and terminates the program!

					COLLECTIVE FUNCTIONS

					When a function is required to be executed by all work-items in a group, it

					may be called a collective function, since the operation is performed by the

					group and not by individual work-items in the group. Barrier functions are not

					the only collective functions available in SyCL. other collective functions are

					described later in this chapter.

					Work-Group Local Memory

					The work-group barrier function is sufficient to coordinate communication

					among work-items in a work-group, but the communication itself must

					occur through memory. Communication may occur through either

					217

					www. dbooks . or g

					[bookmark: 239_0]
					[bookmark: 239_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 9 CommuniCation and SynChronization

					USM or buffers, but this can be inconvenient and inefficient: it requires

					a dedicated allocation for communication and requires partitioning the

					allocation among work-groups.

					To simplify kernel development and accelerate communication between

					work-items in a work-group, SYCL defines a special local memory space

					specifically for communication between work-items in a work-group.

					local

					memory

					local

					memory

					Figure 9-3. Each work-group may access all global memory, but only

					its own local memory

					In Figure 9-3, two work-groups are shown. Both work-groups may

					access USM and buffers in the global memory space. Each work-group may

					access variables in its own local memory space, but cannot access variables

					in another work-group’s local memory.

					When a work-group begins, the contents of its local memory are

					uninitialized, and local memory does not persist after a work-group

					finishes executing. Because of these properties, local memory may only be

					used for temporary storage while a work-group is executing.

					For some devices, such as for many CPU devices, local memory is

					a software abstraction and is implemented using the same memory

					subsystems as global memory. On these devices, using local memory

					is primarily a convenience mechanism for communication. Some

					compilers may use the memory space information for compiler

					218

					[bookmark: 240_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 9 CommuniCation and SynChronization

					optimizations, but otherwise using local memory for communication

					will not fundamentally perform better than communication via global

					memory on these devices.

					For other devices though, such as many GPU devices, there

					are dedicated resources for local memory, and on these devices,

					communicating via local memory will perform better than communicating

					via global memory.

					Communication between work-items in a work-group can be more

					convenient and faster when using local memory!

					We can use the device query info::device::local_mem_type to

					determine whether an accelerator has dedicated resources for local

					memory or whether local memory is implemented as a software

					abstraction of global memory. Please refer to Chapter 12 for more

					information about querying properties of a device and to Chapters 15,

					16, and 17 for more information about how local memory is typically

					implemented for CPUs, GPUs, and FPGAs.

					Using Work-Group Barriers and Local

					Memory

					Now that we have identified the basic building blocks for efficient

					communication between work-items, we can describe how to express

					work-group barriers and local memory in kernels. Remember that

					communication between work-items requires a notion of work-item

					grouping, so these concepts can only be expressed for ND-range kernels

					and hierarchical kernels and are not included in the execution model for

					basic data-parallel kernels.

					219

					www. dbooks . or g

					[bookmark: 241_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 9 CommuniCation and SynChronization

					This chapter will build upon the naïve matrix multiplication kernel

					examples introduced in Chapter 4 by introducing communication between

					the work-items in the work-groups executing the matrix multiplication.

					On many devices—but not necessarily all!—communicating through local

					memory will improve the performance of the matrix multiplication kernel.

					A NOTE ABOUT MATRIX MULTIPLICATION

					in this book, matrix multiplication kernels are used to demonstrate how

					changes in a kernel affect performance. although matrix multiplication

					performance may be improved on some devices using the techniques

					described in this chapter, matrix multiplication is such an important and

					common operation that many vendors have implemented highly tuned

					versions of matrix multiplication. Vendors invest significant time and effort

					implementing and validating functions for specific devices and in some cases

					may use functionality or techniques that are difficult or impossible to use in

					standard parallel kernels.

					USE VENDOR-PROVIDED LIBRARIES!

					When a vendor provides a library implementation of a function, it is almost

					always beneficial to use it rather than re-implementing the function as a

					parallel kernel! For matrix multiplication, one can look to onemKL as part of

					intel’s oneapi toolkits for solutions appropriate for dpC++ programmers.

					Figure 9-4 shows the naïve matrix multiplication kernel we will be

					starting from, taken from Chapter 4.

					220

				

			

		

		
			
				
					
				
			

			
				
					Chapter 9 CommuniCation and SynChronization

					h.parallel_for(range{M, N}, [=](id<2> id) {

					int m = id[0];

					int n = id[1];

					T sum = 0;

					for (int k = 0; k < K; k++)

					sum += matrixA[m][k] * matrixB[k][n];

					matrixC[m][n] = sum;

					});

					Figure 9-4. The naïve matrix multiplication kernel from Chapter 4

					In Chapter 4, we observed that the matrix multiplication algorithm has

					a high degree of reuse and that grouping work-items may improve locality

					of access which may improve cache hit rates. In this chapter, instead of

					relying on implicit cache behavior to improve performance, our modified

					matrix multiplication kernels will instead use local memory as an explicit

					cache, to guarantee locality of access.

					For many algorithms, it is helpful to think of local memory as an

					explicit cache.

					Figure 9-5 is a modified diagram from Chapter 4 showing a work-group

					consisting of a single row, which makes the algorithm using local memory

					easier to understand. Observe that for elements in a row of the result

					matrix, every result element is computed using a unique column of data

					from one of the input matrices, shown in blue and orange. Because there

					is no data sharing for this input matrix, it is not an ideal candidate for local

					memory. Observe, though, that every result element in the row accesses

					the exact same data in the other input matrix, shown in green. Because this

					data is reused, it is an excellent candidate to benefit from work-group local

					memory.

					221

					www. dbooks . or g

					[bookmark: 243_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 9 CommuniCation and SynChronization

					Figure 9-5. Mapping of matrix multiplication to work-groups and

					work-items

					Because we want to multiply matrices that are potentially very large

					and because work-group local memory may be a limited resource, our

					modified kernels will process subsections of each matrix, which we will

					refer to as a matrix tile. For each tile, our modified kernel will load data for

					the tile into local memory, synchronize the work-items in the group, and

					then load the data from local memory rather than global memory. The

					data that is accessed for the first tile is shown in Figure 9-6.

					In our kernels, we have chosen the tile size to be equivalent to the

					work-group size. This is not required, but because it simplifies transfers

					into or out of local memory, it is common and convenient to choose a tile

					size that is a multiple of the work-group size.

					Figure 9-6. Processing the first tile: the green input data (left of X)

					is reused and is read from local memory, the blue and orange input

					data (right of X) is read from global memory

					222

					[bookmark: 244_0]
					[bookmark: 244_1]
				

			

		

		
			
				
					Chapter 9 CommuniCation and SynChronization

					Work-Group Barriers and Local Memory in

					ND-Range Kernels

					This section describes how work-group barriers and local memory are

					expressed in ND-range kernels. For ND-range kernels, the representation

					is explicit: a kernel declares and operates on a local accessor representing

					an allocation in the local address space and calls a barrier function to

					synchronize the work-items in a work-group.

					Local Accessors

					To declare local memory for use in an ND-range kernel, use a local

					accessor. Like other accessor objects, a local accessor is constructed within

					a command group handler, but unlike the accessor objects discussed

					in Chapters 3 and 7, a local accessor is not created from a buffer object.

					Instead, a local accessor is created by specifying a type and a range

					describing the number of elements of that type. Like other accessors,

					local accessors may be one-dimensional, two-dimensional, or three-

					dimensional. Figure 9-7 demonstrates how to declare local accessors and

					use them in a kernel.

					Remember that local memory is uninitialized when each work-group

					begins and does not persist after each work-group completes. This means

					that a local accessor must always be read_write, since otherwise a kernel

					would have no way to assign the contents of local memory or view the

					results of an assignment. Local accessors may optionally be atomic though,

					in which case accesses to local memory via the accessor are performed

					atomically. Atomic accesses are discussed in more detail in Chapter 19.

					223

					www. dbooks . or g

					[bookmark: 245_0]
					[bookmark: 245_1]
				

			

		

		
			
				
					Chapter 9 CommuniCation and SynChronization

					// This is a typical global accessor.

					accessor dataAcc {dataBuf, h};

					// This is a 1D local accessor consisting of 16 ints:

					local_accessor<int> localIntAcc{16, h};

					// This is a 2D local accessor consisting of 4 x 4 floats:

					local_accessor<float,2> localFloatAcc{{4,4}, h};

					h.parallel_for(nd_range<1>{{size}, {16}}, [=](nd_item<1> item) {

					auto index = item.get_global_id();

					auto local_index = item.get_local_id();

					// Within a kernel, a local accessor may be read from

					// and written to like any other accessor.

					localIntAcc[local_index] = dataAcc[index] + 1;

					dataAcc[index] = localIntAcc[local_index];

					});

					Figure 9-7. Declaring and using local accessors

					Synchronization Functions

					To synchronize the work-items in an ND-range kernel work-group, call the

					barrier function in the nd_item class. Because the barrier function is a

					member of the nd_item class, it is only available to ND-range kernels and

					is not available to basic data-parallel kernels or hierarchical kernels.

					The barrier function currently accepts one argument to describe

					the memory spaces to synchronize or fence, but the arguments to the

					barrier function may change in the future as the memory model evolves

					in SYCL and DPC++. In all cases though, the arguments to the barrier

					function provide additional control regarding the memory spaces that are

					synchronized or the scope of the memory synchronization.

					When no arguments are passed to the barrier function, the barrier

					function will use functionally correct and conservative defaults. The

					code examples in this chapter use this syntax for maximum portability

					and readability. For highly optimized kernels, it is recommended to

					precisely describe which memory spaces or which work-items must be

					synchronized, which may improve performance.

					224

					[bookmark: 246_0]
					[bookmark: 246_1]
				

			

		

		
			
				
					Chapter 9 CommuniCation and SynChronization

					A Full ND-Range Kernel Example

					Now that we know how to declare a local memory accessor and

					synchronize access to it using a barrier function, we can implement

					an ND-range kernel version of matrix multiplication that coordinates

					communication among work-items in the work-group to reduce traffic to

					global memory. The complete example is shown in Figure 9-8.

					// Traditional accessors, representing matrices in global memory:

					accessor matrixA{bufA, h};

					accessor matrixB{bufB, h};

					accessor matrixC{bufC, h};

					// Local accessor, for one matrix tile:

					constexpr int tile_size = 16;

					local_accessor<int> tileA{tile_size, h};

					h.parallel_for(

					nd_range<2>{{M, N}, {1, tile_size}}, [=](nd_item<2> item) {

					// Indices in the global index space:

					int m = item.get_global_id()[0];

					int n = item.get_global_id()[1];

					// Index in the local index space:

					int i = item.get_local_id()[1];

					T sum = 0;

					for (int kk = 0; kk < K; kk += tile_size) {

					// Load the matrix tile from matrix A, and synchronize

					// to ensure all work-items have a consistent view

					// of the matrix tile in local memory.

					tileA[i] = matrixA[m][kk + i];

					item.barrier();

					// Perform computation using the local memory tile, and

					// matrix B in global memory.

					for (int k = 0; k < tile_size; k++)

					sum += tileA[k] * matrixB[kk + k][n];

					// After computation, synchronize again, to ensure all

					// reads from the local memory tile are complete.

					item.barrier();

					}

					// Write the final result to global memory.

					matrixC[m][n] = sum;

					});

					Figure 9-8. Expressing a tiled matrix multiplication kernel with an

					ND-range parallel_for and work-group local memory

					225

					www. dbooks . or g

					[bookmark: 247_0]
					[bookmark: 247_1]
				

			

		

		
			
				
					Chapter 9 CommuniCation and SynChronization

					The main loop in this kernel can be thought of as two distinct phases: in

					the first phase, the work-items in the work-group collaborate to load shared

					data from the A matrix into work-group local memory; and in the second,

					the work-items perform their own computations using the shared data. In

					order to ensure that all work-items have completed the first phase before

					moving onto the second phase, the two phases are separated by a call to

					barrier to synchronize all work-items and to provide a memory fence. This

					pattern is a common one, and the use of work-group local memory in a

					kernel almost always necessitates the use of work-group barriers.

					Note that there must also be a call to barrier to synchronize execution

					between the computation phase for the current tile and the loading phase

					for the next matrix tile. Without this synchronization operation, part of the

					current matrix tile may be overwritten by one work-item in the work-group

					before another work-item is finished computing with it. In general, any

					time that one work-item is reading or writing data in local memory that

					was read or written by another work-item, synchronization is required. In

					Figure 9-8, the synchronization is done at the end of the loop, but it would

					be equally correct to synchronize at the beginning of each loop iteration

					instead.

					Work-Group Barriers and Local Memory

					in Hierarchical Kernels

					This section describes how work-group barriers and local memory are

					expressed in hierarchical kernels. Unlike ND-range kernels, local memory

					and barriers in hierarchical kernels are implicit, requiring no special

					syntax or function calls. Some programmers will find the hierarchical

					kernel representation more intuitive and easier to use, whereas other

					programmers will appreciate the direct control provided by ND-range

					kernels. In most cases, the same algorithms may be described using both

					representations, so we can choose the representation that we find easiest

					to develop and maintain.

					226

					[bookmark: 248_0]
					[bookmark: 248_1]
				

			

		

		
			
				
					Chapter 9 CommuniCation and SynChronization

					Scopes for Local Memory and Barriers

					Recall from Chapter 4 that hierarchical kernels express two levels of

					parallel execution through use of the parallel_for_work_group and

					parallel_for_work_item functions. These two levels, or scopes, of parallel

					execution are used to express whether a variable is in work-group local

					memory and shared across all work-items in the work-group or whether

					a variable is in per-work-item private memory that is not shared among

					work-items. The two scopes are also used to synchronize the work-items in

					a work-group and to enforce memory consistency.

					Figure 9-9 shows an example hierarchical kernel that declares a

					variable at work-group scope in local memory, loads into it, and then uses

					that variable in work-item scope. There is an implicit barrier between

					the write into local memory at work-group scope and the read from local

					memory at work-item scope.

					range group_size{16};

					range num_groups = size / group_size;

					h.parallel_for_work_group(num_groups, group_size, [=](group<1> group) {

					// This variable is declared at work-group scope, so

					// it is allocated in local memory and accessible to

					// all work-items.

					int localIntArr[16];

					// There is an implicit barrier between code and variables

					// declared at work-group scope and the code and variables

					// at work-item scope.

					group.parallel_for_work_item([&](h_item<1> item) {

					auto index = item.get_global_id();

					auto local_index = item.get_local_id();

					// The code at work-item scope can read and write the

					// variables declared at work-group scope.

					localIntArr[local_index] = index + 1;

					data_acc[index] = localIntArr[local_index];

					});

					});

					Figure 9-9. Hierarchical kernel with a local memory variable

					227

					www. dbooks . or g

					[bookmark: 249_0]
					[bookmark: 249_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 9 CommuniCation and SynChronization

					The main advantage of the hierarchical kernel representation is that

					it looks very similar to standard C++ code, where some variables may be

					assigned in one scope and used in a nested scope. Of course, this also may

					be considered a disadvantage, since it is not immediately obvious which

					variables are in local memory and when barriers must be inserted by the

					hierarchical kernel compiler. This is especially true for devices where

					barriers are expensive!

					A Full Hierarchical Kernel Example

					Now that we know how to express local memory and barriers in

					hierarchical kernels, we can write a hierarchical kernel that implements

					the same algorithm as the ND-range kernel in Figure 9-7. This kernel is

					shown in Figure 9-10.

					Although the hierarchical kernel is very similar to the ND-range kernel,

					there is one key difference: in the ND-range kernel, the results of the

					matrix multiplication are accumulated into the per-work-item variable sum

					before writing to the output matrix in memory, whereas the hierarchical

					kernel accumulates into memory. We could accumulate into a per-work-

					item variable in the hierarchical kernel as well, but this requires a special

					private_memory syntax to declare per-work-item data at work-group

					scope, and one of the reasons we chose to use the hierarchical kernel

					syntax was to avoid special syntax!

					hierarchical kernels do not require special syntax to declare variables

					in work-group local memory, but they require special syntax to

					declare some variables in work-item private memory!

					To avoid the special per-work-item data syntax, it is a common pattern

					for work-item loops in hierarchical kernels to write intermediate results to

					either work-group local memory or global memory.

					228

				

			

		

		
			
				
					Chapter 9 CommuniCation and SynChronization

					const int tileSize = 16;

					range group_size{1, tileSize};

					range num_groups{M, N / tileSize};

					h.parallel_for_work_group(num_groups, group_size, [=](group<2> group) {

					// Because this array is declared at work-group scope

					// it is in local memory

					T tileA[16];

					for (int kk = 0; kk < K; kk += tileSize) {

					// A barrier may be inserted between scopes here

					// automatically, unless the compiler can prove it is

					// not required

					// Load the matrix tile from matrix A

					group.parallel_for_work_item([&](h_item<2> item) {

					int m = item.get_global_id()[0];

					int i = item.get_local_id()[1];

					tileA[i] = matrixA[m][kk + i];

					});

					// A barrier gets inserted here automatically, so all

					// work items have a consistent view of memory

					group.parallel_for_work_item([&](h_item<2> item) {

					int m = item.get_global_id()[0];

					int n = item.get_global_id()[1];

					for (int k = 0; k < tileSize; k++)

					matrixC[m][n] += tileA[k] * matrixB[kk + k][n];

					});

					// A barrier gets inserted here automatically, too

					}

					});

					Figure 9-10. A tiled matrix multiplication kernel implemented as a

					hierarchical kernel

					One final interesting property of the kernel in Figure 9-10 concerns the

					loop iteration variable kk: since the loop is at work-group scope, the loop

					iteration variable kk could be allocated out of work-group local memory,

					just like the tileA array. In this case though, since the value of kk is the

					same for all work-items in the work-group, a smart compiler may choose

					to allocate kk from per-work-item memory instead, especially for devices

					where work-group local memory is a scarce resource.

					229

					www. dbooks . or g

					[bookmark: 251_0]
				

			

		

		
			
				
					Chapter 9 CommuniCation and SynChronization

					Sub-Groups

					So far in this chapter, work-items have communicated with other work-

					items in the work-group by exchanging data through work-group local

					memory and by synchronizing via implicit or explicit barrier functions,

					depending on how the kernel is written.

					In Chapter 4, we discussed another grouping of work-items. A sub-

					group is an implementation-defined subset of work-items in a work-group

					that execute together on the same hardware resources or with additional

					scheduling guarantees. Because the implementation decides how to group

					work-items into sub-groups, the work-items in a sub-group may be able to

					communicate or synchronize more efficiently than the work-items in an

					arbitrary work-group.

					This section describes the building blocks for communication

					among work-items in a sub-group. Note that sub-groups are currently

					implemented only for ND-range kernels and sub-groups are not

					expressible through hierarchical kernels.

					Synchronization via Sub-Group Barriers

					Just like how the work-items in a work-group in an ND-range kernel may

					synchronize using a work-group barrier function, the work-items in a

					sub-group may synchronize using a sub-group barrier function. Whereas

					the work-items in a work-group synchronize by calling a group_barrier

					function or the barrier function in the nd_item class, the work-items

					in a sub-group synchronize by calling a group_barrier function or the

					barrier function in a special sub_group class that may be queried from

					the nd_item class, as shown in Figure 9-11.

					230

					[bookmark: 252_0]
					[bookmark: 252_1]
					[bookmark: 252_2]
				

			

		

		
			
				
					Chapter 9 CommuniCation and SynChronization

					h.parallel_for(nd_range{{size}, {16}}, [=](nd_item<1> item) {

					auto sg = item.get_sub_group();

					...

					sg.barrier();

					...

					});

					Figure 9-11. Querying and using the sub_group class

					Like the work-group barrier, the sub-group barrier may accept optional

					arguments to more precisely control the barrier operation. Regardless of

					whether the sub-group barrier function is synchronizing global memory or

					local memory, synchronizing only the work-items in the sub-group is likely

					cheaper than synchronizing all of the work-items in the work-group.

					Exchanging Data Within a Sub-Group

					Unlike work-groups, sub-groups do not have a dedicated memory space

					for exchanging data. Instead, work-items in the sub-group may exchange

					data through work-group local memory, through global memory, or more

					commonly by using sub-group collective functions.

					As described previously, a collective function is a function that

					describes an operation performed by a group of work-items, not an

					individual work-item, and because a barrier synchronization function is

					an operation performed by a group of work-items, it is one example of a

					collective function.

					Other collective functions express common communication patterns.

					We will describe the semantics for many collective functions in detail

					later in this chapter, but for now, we will briefly describe the broadcast

					collective function that we will use to implement matrix multiplication

					using sub-groups.

					The broadcast collective function takes a value from one work-item

					in the group and communicates it to all other work-items in the group.

					An example is shown in Figure 9-12. Notice that the semantics of the

					broadcast function require that the local_id identifying which value in

					231

					www. dbooks . or g

					[bookmark: 253_0]
					[bookmark: 253_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 9 CommuniCation and SynChronization

					the group to communicate must be the same for all work-items in the

					group, ensuring that the result of the broadcast function is also the same

					for all work-items in the group.

					Figure 9-12. Processing by the broadcast function

					If we look at the innermost loop of our local memory matrix multiplication

					kernel, shown in Figure 9-13, we can see that the access to the matrix tile is a

					broadcast, since each work-item in the group reads the same value out of the

					matrix tile.

					h.parallel_for<class MatrixMultiplication>(

					nd_range<2>{ {M, N}, {1, tileSize} }, [=](nd_item<2> item) {

					...

					// Perform computation using the local memory tile, and

					// matrix B in global memory.

					for(size_t k = 0; k < tileSize; k++) {

					// Because the value of k is the same for all work-items

					// in the group, these reads from tileA are broadcast

					// operations.

					sum += tileA[k] * matrixB[kk + k][n];

					}

					...

					});

					Figure 9-13. Matrix multiplication kernel includes a broadcast

					operation

					We will use the sub-group broadcast function to implement a matrix

					multiplication kernel that does not require work-group local memory

					or barriers. On many devices, sub-group broadcasts are faster than

					broadcasting with work-group local memory and barriers.

					232

					[bookmark: 254_0]
					[bookmark: 254_1]
				

			

		

		
			
				
					Chapter 9 CommuniCation and SynChronization

					A Full Sub-Group ND-Range Kernel Example

					Figure 9-14 is a complete example that implements matrix multiplication

					using sub-groups. Notice that this kernel requires no work-group local

					memory or explicit synchronization and instead uses a sub-group

					broadcast collective function to communicate the contents of the matrix

					tile among work-items.

					// Note: This example assumes that the sub-group size is

					// greater than or equal to the tile size!

					static const int tileSize = 4;

					h.parallel_for(

					nd_range<2>{{M, N}, {1, tileSize}}, [=](nd_item<2> item) {

					auto sg = item.get_sub_group();

					// Indices in the global index space:

					int m = item.get_global_id()[0];

					int n = item.get_global_id()[1];

					// Index in the local index space:

					int i = item.get_local_id()[1];

					T sum = 0;

					for (int_fast64_t kk = 0; kk < K; kk += tileSize) {

					// Load the matrix tile from matrix A.

					T tileA = matrixA[m][kk + i];

					// Perform computation by broadcasting from the matrix

					// tile and loading from matrix B in global memory. The loop

					// variable k describes which work-item in the sub-group to

					// broadcast data from.

					for (int k = 0; k < tileSize; k++)

					sum += intel::broadcast(sg, tileA, k) * matrixB[kk + k][n];

					}

					// Write the final result to global memory.

					matrixC[m][n] = sum;

					});

					});

					Figure 9-14. Tiled matrix multiplication kernel expressed with ND-

					range parallel_for and sub-group collective functions

					233

					www. dbooks . or g

					[bookmark: 255_0]
					[bookmark: 255_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 9 CommuniCation and SynChronization

					Collective Functions

					In the “Sub-Groups” section of this chapter, we described collective

					functions and how collective functions express common communication

					patterns. We specifically discussed the broadcast collective function,

					which is used to communicate a value from one work-item in a group

					to the other work-items in the group. This section describes additional

					collective functions.

					Although the collective functions described in this section can be

					implemented directly in our programs using features such as atomics,

					work-group local memory, and barriers, many devices include dedicated

					hardware to accelerate collective functions. Even when a device does

					not include specialized hardware, vendor-provided implementations of

					collective functions are likely tuned for the device they are running on,

					so calling a built-in collective function will usually perform better than a

					general-purpose implementation that we might write.

					use collective functions for common communication patterns to

					simplify code and increase performance!

					Many collective functions are supported for both work-groups and

					sub-groups. Other collective functions are supported only for sub-groups.

					Broadcast

					The broadcast function enables one work-item in a group to share the

					value of a variable with all other work-items in the group. A diagram

					showing how the broadcast function works can be found in Figure 9-12.

					The broadcast function is supported for both work-groups and sub-

					groups.

					234

					[bookmark: 256_0]
					[bookmark: 256_1]
					[bookmark: 256_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 9 CommuniCation and SynChronization

					Votes

					The any_of and all_of functions (henceforth referred to collectively as

					“vote” functions) enable work-items to compare the result of a Boolean

					condition across their group: any_of returns true if the condition is true

					for at least one work-item in the group, and all_of returns true only if the

					condition is true for all work-items in the group. A comparison of these two

					functions for an example input is shown in Figure 9-15.

					Figure 9-15. Comparison of the any_of and all_of functions

					The any_of and all_of vote functions are supported for both work-

					groups and sub-groups.

					Shuffles

					One of the most useful features of sub-groups is the ability to communicate

					directly between individual work-items without explicit memory

					operations. In many cases, such as the sub-group matrix multiplication

					kernel, these shuffle operations enable us to remove work-group local

					memory usage from our kernels and/or to avoid unnecessary repeated

					accesses to global memory. There are several flavors of these shuffle

					functions available.

					The most general of the shuffle functions is called shuffle, and as

					shown in Figure 9-16, it allows for arbitrary communication between

					any pair of work-items in the sub-group. This generality may come at a

					performance cost, however, and we strongly encourage making use of the

					more specialized shuffle functions wherever possible.

					235

					www. dbooks . or g

					[bookmark: 257_0]
					[bookmark: 257_1]
					[bookmark: 257_2]
					[bookmark: 257_3]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 9 CommuniCation and SynChronization

					In Figure 9-16, a generic shuffle is used to sort the x values of a sub-

					group using pre-computed permutation indices. Arrows are shown for one

					work-item in the sub-group, where the result of the shuffle is the value of x

					for the work-item with local_id equal to 7.

					Figure 9-16. Using a generic shuffle to sort x values based on pre-

					computed permutation indices

					Note that the sub-group broadcast function can be thought of as a

					specialized version of the general-purpose shuffle function, where the shuffle

					index is the same for all work-items in the sub-group. When the shuffle index

					is known to be the same for all work-items in the sub-group, using broadcast

					instead of shuffle provides the compiler additional information and may

					increase performance on some implementations.

					The shuffle_up and shuffle_down functions effectively shift the

					contents of a sub-group by a fixed number of elements in a given direction,

					as shown in Figure 9-17. Note that the values returned to the last five

					work-items in the sub-group are undefined and are shown as blank

					in Figure 9-17. Shifting can be useful for parallelizing loops with loop-

					carried dependences or when implementing common algorithms such as

					exclusive or inclusive scans.

					236

					[bookmark: 258_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 9 CommuniCation and SynChronization

					Figure 9-17. Using shuffle_down to shift x values of a sub-group by

					five items

					The shuffle_xor function swaps the values of two work-items, as

					specified by the result of an XOR operation applied to the work-item's

					sub-group local id and a fixed constant. As shown in Figures 9-18 and 9-19,

					several common communication patterns can be expressed using an XOR:

					for example, swapping pairs of neighboring values

					Figure 9-18. Swapping neighboring pairs of x using a shuffle_xor

					or reversing the sub-group values.

					237

					www. dbooks . or g

					[bookmark: 259_0]
					[bookmark: 259_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 9 CommuniCation and SynChronization

					Figure 9-19. Reverse the values of x using a shuffle_xor

					SUB-GROUP OPTIMIZATIONS USING BROADCAST, VOTE, AND COLLECTIVES

					the behavior of broadcast, vote, and other collective functions applied to sub-

					groups is identical to when they are applied to work-groups, but they deserve

					additional attention because they may enable aggressive optimizations in

					certain compilers. For example, a compiler may be able to reduce register

					usage for variables that are broadcast to all work-items in a sub-group or

					may be able to reason about control flow divergence based on usage of the

					any_of and all_of functions.

					Loads and Stores

					The sub-group load and store functions serve two purposes: first,

					informing the compiler that all work-items in the sub-group are loading

					contiguous data starting from the same (uniform) location in memory and,

					second, enabling us to request optimized loads/stores of large amounts of

					contiguous data.

					For an ND-range parallel_for, it may not be clear to the compiler

					how addresses computed by different work-items relate to one another.

					For example, as shown in Figure 9-20, accessing a contiguous block of

					238

					[bookmark: 260_0]
					[bookmark: 260_1]
					[bookmark: 260_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 9 CommuniCation and SynChronization

					memory from indices [0, 32) appears to have a strided access pattern from

					the perspective of each work-item.

					for(int b = 0; <4; ++b)

					{

					int offset = b * sg.get_max_local_range ();

					array [offset + sg.get_local_id ()];

					...

					}

					Figure 9-20. Memory access pattern of a sub-group accessing four

					contiguous blocks

					Some architectures include dedicated hardware to detect when work-

					items in a sub-group access contiguous data and combine their memory

					requests, while other architectures require this to be known ahead of

					time and encoded in the load/store instruction. Sub-group loads and

					stores are not required for correctness on any platform, but may improve

					performance on some platforms and should therefore be considered as an

					optimization hint.

					Summary

					This chapter discussed how work-items in a group may communicate and

					cooperate to improve the performance of some types of kernels.

					We first discussed how ND-range kernels and hierarchical kernels

					support grouping work-items into work-groups. We discussed how

					grouping work-items into work-groups changes the parallel execution

					model, guaranteeing that the work-items in a work-group execute

					concurrently and enabling communication and synchronization.

					Next, we discussed how the work-items in a work-group may

					synchronize using barriers and how barriers are expressed explicitly for ND-

					range kernels or implicitly between work-group and work-item scopes for

					239

					www. dbooks . or g

					[bookmark: 261_0]
					[bookmark: 261_1]
					[bookmark: 261_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 9 CommuniCation and SynChronization

					hierarchical kernels. We also discussed how communication between work-

					items in a work-group can be performed via work-group local memory, both

					to simplify kernels and to improve performance, and we discussed how

					work-group local memory is represented using local accessors for ND-range

					kernels or allocations at work-group scope for hierarchical kernels.

					We discussed how work-groups in ND-range kernels may be further

					divided into sub-groupings of work-items, where the sub-groups of work-

					items may support additional communication patterns or scheduling

					guarantees.

					For both work-groups and sub-groups, we discussed how common

					communication patterns may be expressed and accelerated through use of

					collective functions.

					The concepts in this chapter are an important foundation for

					understanding the common parallel patterns described in Chapter 14 and for

					understanding how to optimize for specific devices in Chapters 15, 16, and 17.

					Open Access This chapter is licensed under the terms

					of the Creative Commons Attribution 4.0 International

					License (http://creativecommons.org/licenses/by/4.0/), which permits

					use, sharing, adaptation, distribution and reproduction in any medium or

					format, as long as you give appropriate credit to the original author(s) and

					the source, provide a link to the Creative Commons license and indicate if

					changes were made.

					The images or other third party material in this chapter are included

					in the chapter’s Creative Commons license, unless indicated otherwise

					in a credit line to the material. If material is not included in the chapter’s

					Creative Commons license and your intended use is not permitted by

					statutory regulation or exceeds the permitted use, you will need to obtain

					permission directly from the copyright holder.

					240

				

			

		

		
			
				
					
				
			

			
				
					CHAPTER 10

					Defining Kernels

					Thus far in this book, our code examples have represented kernels

					using C++ lambda expressions. Lambda expressions are a concise and

					convenient way to represent a kernel right where it is used, but they are not

					the only way to represent a kernel in SYCL. In this chapter, we will explore

					various ways to define kernels in detail, helping us to choose a kernel form

					that is most natural for our C++ coding needs.

					This chapter explains and compares three ways to represent a kernel:

					•

					•

					•

					Lambda expressions

					Named function objects (functors)

					Interoperability with kernels created via other

					languages or APIs

					© Intel Corporation 2021

					J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-5574-2_10

					241

					www. dbooks . or g

					[bookmark: 263_0]
					[bookmark: 263_1]
				

			

		

		
			
				
					Chapter 10 Defining Kernels

					This chapter closes with a discussion of how to explicitly

					manipulate kernels in a program object to control when and how

					kernels are compiled.

					Why Three Ways to Represent a Kernel?

					Before we dive into the details, let’s start with a summary of why there are

					three ways to define a kernel and the advantages and disadvantages of

					each method. A useful summary is given in Figure 10-1.

					Bear in mind that a kernel is used to express a unit of computation

					and that many instances of a kernel will usually execute in parallel on an

					accelerator. SYCL supports multiple ways to express a kernel to integrate

					naturally and seamlessly into a variety of codebases while executing

					efficiently on a wide diversity of accelerator types.

					242

					[bookmark: 264_0]
					[bookmark: 264_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 10 Defining Kernels

					Figure 10-1. Three ways to represent a kernel

					243

					www. dbooks . or g

					[bookmark: 265_0]
				

			

		

		
			
				
					Chapter 10 Defining Kernels

					Kernels As Lambda Expressions

					C++ lambda expressions, also referred to as anonymous function objects,

					unnamed function objects, closures, or simply lambdas, are a convenient

					way to express a kernel right where it is used. This section describes how

					to represent a kernel as a C++ lambda expression. This expands on the

					introductory refresher on C++ lambda functions, in Chapter 1, which

					included some coding samples with output.

					C++ lambda expressions are very powerful and have an expressive

					syntax, but only a specific subset of the full C++ lambda expression syntax

					is required (and supported) when expressing a kernel.

					h.parallel_for(size,

					// This is the start of a kernel lambda expression:

					[=](id<1> i) {

					data_acc[i] = data_acc[i] + 1;

					}

					// This is the end of the kernel lambda expression.

);

					Figure 10-2. Kernel defined using a lambda expression

					Elements of a Kernel Lambda Expression

					Figure 10-2 shows a kernel written as a typical lambda expression—the

					code examples so far in this book have used this syntax.

					The illustration in Figure 10-3 shows more elements of a lambda

					expression that may be used with kernels, but many of these elements are

					not typical. In most cases, the lambda defaults are sufficient, so a typical

					kernel lambda expression looks more like the lambda expression in

					Figure 10-2 than the more complicated lambda expression in Figure 10-3.

					244

					[bookmark: 266_0]
					[bookmark: 266_1]
					[bookmark: 266_2]
					[bookmark: 266_3]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 10 Defining Kernels

					accessor data_acc {data_buf, h};

					h.parallel_for(size,

					[=](id<1> i) noexcept [[cl::reqd_work_group_size(8,1,1)]] -> void {

					data_acc[i] = data_acc[i] + 1;

					});

					Figure 10-3. More elements of a kernel lambda expression, including

					optional elements

					1. The first part of a lambda expression describes

					the lambda captures. Capturing a variable from a

					surrounding scope enables it to be used within the

					lambda expression, without explicitly passing it to

					the lambda expression as a parameter.

					C++ lambda expressions support capturing a

					variable by copying it or by creating a reference

					to it, but for kernel lambda expressions, variables

					may only be captured by copy. General practice is

					to simply use the default capture mode [=], which

					implicitly captures all variables by value, although it

					is possible to explicitly name each captured variable

					as well. Any variable used within a kernel that is not

					captured by value will cause a compile-time error.

					2. The second part of a lambda expression describes

					parameters that are passed to the lambda

					expression, just like parameters that are passed to

					named functions.

					For kernel lambda expressions, the parameters depend on how the

					kernel was invoked and usually identify the index of the work-item in the

					parallel execution space. Please refer to Chapter 4 for more details about

					245

					www. dbooks . or g

					[bookmark: 267_0]
				

			

		

		
			
				
					Chapter 10 Defining Kernels

					the various parallel execution spaces and how to identify the index of a

					work-item in each execution space.

					3. The last part of the lambda expression defines

					the lambda function body. For a kernel lambda

					expression, the function body describes the

					operations that should be performed at each index

					in the parallel execution space.

					There are other parts of a lambda expression that are supported for

					kernels, but are either optional or infrequently used:

					4. Some specifiers (such as mutable) may be

					supported, but their use is not recommended, and

					support may be removed in future versions of SYCL

					(it is gone in the provisional SYCL 2020) or DPC++.

					None is shown in the example code.

					5. The exception specification is supported, but must

					be noexceptif provided, since exceptions are not

					supported for kernels.

					6. Lambda attributes are supported and may be used

					to control how the kernel is compiled. For example,

					the reqd_work_group_sizeattribute can be used to

					require a specific work-group size for a kernel.

					7. The return type may be specified, but must be void

					if provided, since non-voidreturn types are not

					supported for kernels.

					246

				

			

		

		
			
				
					
				
			

			
				
					Chapter 10 Defining Kernels

					LAMBDA CAPTURES: IMPLICIT OR EXPLICIT?

					some C++ style guides recommend against implicit (or default) captures for

					lambda expressions due to possible dangling pointer issues, especially when

					lambda expressions cross scope boundaries. the same issues may occur

					when lambdas are used to represent kernels, since kernel lambdas execute

					asynchronously on the device, separately from host code.

					Because implicit captures are useful and concise, it is common practice for

					sYCl kernels and a convention we use in this book, but it is ultimately our

					decision whether to prefer the brevity of implicit captures or the clarity of

					explicit captures.

					Naming Kernel Lambda Expressions

					There is one more element that must be provided in some cases when

					a kernel is written as a lambda expression: because lambda expressions

					are anonymous, at times SYCL requires an explicit kernel name template

					parameter to uniquely identify a kernel written as a lambda expression.

					// In this example, "class Add" names the kernel lambda:

					h.parallel_for<class Add>(size, [=](id<1> i) {

					data_acc[i] = data_acc[i] + 1;

					});

					Figure 10-4. Naming kernel lambda expressions

					Naming a kernel lambda expression is a way for a host code compiler

					to identify which kernel to invoke when the kernel was compiled by a

					separate device code compiler. Naming a kernel lambda also enables

					runtime introspection of a compiled kernel or building a kernel by name,

					as shown in Figure 10-9.

					247

					www. dbooks . or g

					[bookmark: 269_0]
					[bookmark: 269_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 10 Defining Kernels

					To support more concise code when the kernel name template

					parameter is not required, the DPC++ compiler supports omitting the

					kernel name template parameter for a kernel lambda via the -fsycl-

					unnamed-lambdacompiler option. When using this option, no explicit

					kernel name template parameter is required, as shown in Figure 10-5.

					// In many cases the explicit kernel name template parameter

					// is not required.

					h.parallel_for(size, [=](id<1> i) {

					data_acc[i] = data_acc[i] + 1;

					});

					Figure 10-5. Using unnamed kernel lambda expressions

					Because the kernel name template parameter for lambda expressions

					is not required in most cases, we can usually start with an unnamed

					lambda and only add a kernel name in specific cases when the kernel

					name template parameter is required.

					When the kernel name template parameter is not required, using

					unnamed kernel lambdas is preferred to reduce verbosity.

					Kernels As Named Function Objects

					Named function objects, also known as functors, are an established pattern

					in C++ that allows operating on an arbitrary collection of data while

					maintaining a well-defined interface. When used to represent a kernel,

					the member variables of a named function object define the state that the

					kernel may operate on, and the overloaded function call operator()is

					invoked for each work-item in the parallel execution space.

					248

					[bookmark: 270_0]
					[bookmark: 270_1]
					[bookmark: 270_2]
				

			

		

		
			
				
					Chapter 10 Defining Kernels

					Named function objects require more code than lambda expressions

					to express a kernel, but the extra verbosity provides more control and

					additional capabilities. It may be easier to analyze and optimize kernels

					expressed as named function objects, for example, since any buffers and

					data values used by the kernel must be explicitly passed to the kernel,

					rather than captured automatically.

					Finally, because named function objects are just like any other C++

					class, kernels expressed as named function objects may be templated,

					unlike kernels expressed as lambda expressions. Kernels expressed as

					named function objects may also be easier to reuse and may be shipped as

					part of a separate header file or library.

					Elements of a Kernel Named Function Object

					The code in Figure 10-6 describes the elements of a kernel represented as a

					named function object.

					249

					www. dbooks . or g

					[bookmark: 271_0]
					[bookmark: 271_1]
				

			

		

		
			
				
					Chapter 10 Defining Kernels

					class Add {

					public:

					Add(accessor<int> acc) : data_acc(acc) {}

					void operator()(id<1> i) {

					data_acc[i] = data_acc[i] + 1;

					}

					private:

					accessor<int> data_acc;

					};

					int main() {

					constexpr size_t size = 16;

					std::array<int, size> data;

					for (int i = 0; i < size; i++)

					data[i] = i;

					{

					buffer data_buf{data};

					queue Q{ host_selector{} };

					std::cout << "Running on device: "

					<< Q.get_device().get_info<info::device::name>() << "\n";

					Q.submit([&](handler& h) {

					accessor data_acc {data_buf, h};

					h.parallel_for(size, Add(data_acc));

					});

					}

					});

					Figure 10-6. Kernel as a named function object

					When a kernel is expressed as a named function object, the named

					function object type must follow C++11 rules to be trivially copyable.

					Informally, this means that the named function objects may be safely

					copied byte by byte, enabling the member variables of the named function

					object to be passed to and accessed by kernel code executing on a device.

					The arguments to the overloaded function call operator()depend

					on how the kernel is launched, just like for kernels expressed as lambda

					expressions.

					250

					[bookmark: 272_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 10 Defining Kernels

					Because the function object is named, the host code compiler can use

					the function object type to associate with the kernel code produced by the

					device code compiler, even if the function object is templated. As a result,

					no additional kernel name template parameter is needed to name a kernel

					function object.

					Interoperability with Other APIs

					When a SYCL implementation is built on top of another API, the

					implementation may be able to interoperate with kernels defined using

					mechanisms of the underlying API. This allows an application to easily and

					incrementally integrate SYCL into existing codebases.

					Because a SYCL implementation may be layered on top of many other

					APIs, the functionality described in this section is optional and may not

					be supported by all implementations. The underlying API may even differ

					depending on the specific device type or device vendor!

					Broadly speaking, an implementation may support two interoperability

					mechanisms: from an API-defined source or intermediate representation

					(IR) or from an API-specific handle. Of these two mechanisms, the

					ability to create a kernel from an API-defined source or intermediate

					representation is more portable, since some source or IR formats are

					supported by multiple APIs. For example, OpenCL C kernels may be

					directly consumed by many APIs or may be compiled into some form

					understood by an API, but it is unlikely that an API-specific kernel handle

					from one API will be understood by a different API.

					remember that all forms of interoperability are optional!

					Different sYCl implementations may support creating kernels from

					different api-specific handles—or not at all.

					always check the documentation for details!

					251

					www. dbooks . or g

					[bookmark: 273_0]
					[bookmark: 273_1]
				

			

		

		
			
				
					Chapter 10 Defining Kernels

					Interoperability with API-Defined Source

					Languages

					With this form of interoperability, the contents of the kernel are described

					as source code or using an intermediate representation that is not defined

					by SYCL, but the kernel objects are still created using SYCL API calls. This

					form of interoperability allows reuse of kernel libraries written in other

					source languages or use of domain-specific languages (DSLs) that generate

					code in an intermediate representation.

					An implementation must understand the kernel source code or

					intermediate representation to utilize this form of interoperability. For

					example, if the kernel is written using OpenCL C in source form, the

					implementation must support building SYCL programs from OpenCL C

					kernel source code.

					Figure 10-7 shows how a SYCL kernel may be written as OpenCL C

					kernel source code.

					// Note: This must select a device that supports interop!

					queue Q{ cpu_selector{} };

					program p{Q.get_context()};

					p.build_with_source(R"CLC(

					kernel void add(global int* data) {

					int index = get_global_id(0);

					data[index] = data[index] + 1;

					}

)CLC",

					"-cl-fast-relaxed-math");

					std::cout << "Running on device: "

					<< Q.get_device().get_info<info::device::name>() << "\n";

					Q.submit([&](handler& h) {

					accessor data_acc {data_buf, h};

					h.set_args(data_acc);

					h.parallel_for(size, p.get_kernel("add"));

					});

					Figure 10-7. Kernel created from OpenCL C kernel source

					252

					[bookmark: 274_0]
					[bookmark: 274_1]
					[bookmark: 274_2]
				

			

		

		
			
				
					Chapter 10 Defining Kernels

					In this example, the kernel source string is represented as a C++ raw

					string literal in the same file as the SYCL host API calls, but there is no

					requirement that this is the case, and some applications may read the

					kernel source string from a file or even generate it just-in-time.

					Because the SYCL compiler does not have visibility into a SYCL

					kernel written in an API-defined source language, any kernel arguments

					must explicitly be passed using the set_arg()or set_args()interface.

					The SYCL runtime and the API-defined source language must agree on

					a convention to pass objects as kernel arguments. In this example, the

					accessor dataAccis passed as the global pointer kernel argument data.

					The build_with_source()interface supports passing optional API-

					defined build options to precisely control how the kernel is compiled.

					In this example, the program build options -cl-fast-relaxed-mathare

					used to indicate that the kernel compiler can use a faster math library with

					relaxed precision. The program build options are optional and may be

					omitted if no build options are required.

					Interoperability with API-Defined Kernel Objects

					With this form of interoperability, the kernel objects themselves are

					created in another API and then imported into SYCL. This form of

					interoperability enables one part of an application to directly create

					and use kernel objects using underlying APIs and another part of the

					application to reuse the same kernels using SYCL APIs. The code in

					Figure 10-8 shows how a SYCL kernel may be created from an OpenCL

					kernel object.

					253

					www. dbooks . or g

					[bookmark: 275_0]
					[bookmark: 275_1]
				

			

		

		
			
				
					Chapter 10 Defining Kernels

					// Note: This must select a device that supports interop

					// with OpenCL kernel objects!

					queue Q{ cpu_selector{} };

					context sc = Q.get_context();

					const char* kernelSource =

					R"CLC(

					kernel void add(global int* data) {

					int index = get_global_id(0);

					data[index] = data[index] + 1;

					}

)CLC";

					cl_context c = sc.get();

					cl_program p =

					clCreateProgramWithSource(c, 1, &kernelSource, nullptr, nullptr);

					clBuildProgram(p, 0, nullptr, nullptr, nullptr, nullptr);

					cl_kernel k = clCreateKernel(p, "add", nullptr);

					std::cout << "Running on device: "

					<< Q.get_device().get_info<info::device::name>() << "\n";

					Q.submit([&](handler& h) {

					accessor data_acc{data_buf, h};

					h.set_args(data_acc);

					h.parallel_for(size, kernel{k, sc});

					});

					clReleaseContext(c);

					clReleaseProgram(p);

					clReleaseKernel(k);

					Figure 10-8. Kernel created from an OpenCL kernel object

					As with other forms of interoperability, the SYCL compiler does

					not have visibility into an API-defined kernel object. Therefore, kernel

					arguments must be explicitly passed using the set_arg()or set_args()

					interface, and the SYCL runtime and the underlying API must agree on a

					convention to pass kernel arguments.

					254

					[bookmark: 276_0]
					[bookmark: 276_1]
				

			

		

		
			
				
					Chapter 10 Defining Kernels

					Kernels in Program Objects

					In prior sections, when kernels were either created from an API-defined

					representation or from API-specific handles, the kernels were created in

					two steps: first by creating a program object and then by creating the kernel

					from the program object. A program object is a collection of kernels and

					the functions they call that are compiled as a unit.

					For kernels represented as lambda expressions or named function objects,

					the program object containing the kernel is usually implicit and invisible to

					an application. For applications that require more control, an application can

					explicitly manage kernels and the program objects that encapsulate them.

					To describe why this may be beneficial, it is helpful to take a brief look at how

					many SYCL implementations manage just-in-time (JIT) kernel compilation.

					While not required by the specification, many implementations

					compile kernels “lazily.” This is usually a good policy since it ensures fast

					application startup and does not unnecessarily compile kernels that are

					never executed. The disadvantage of this policy is that the first use of a

					kernel usually takes longer than subsequent uses, since it includes the

					time needed to compile the kernel, plus the time needed to submit and

					execute the kernel. For some complex kernels, the time needed to compile

					the kernel can be significant, making it desirable to shift compilation to a

					different point during application execution, such as when the application

					is loading, or in a separate background thread.

					Some kernels may also benefit from implementation-defined “build

					options” to precisely control how the kernel is compiled. For example, for

					some implementations, it may be possible to instruct the kernel compiler

					to use a math library with lower precision and better performance.

					To provide more control over when and how a kernel is compiled, an

					application can explicitly request that a kernel be compiled before the

					kernel is used, using specific build options. Then, the pre-compiled kernel

					can be submitted into a queue for execution, like usual. Figure 10-9 shows

					how this works.

					255

					www. dbooks . or g

					[bookmark: 277_0]
					[bookmark: 277_1]
				

			

		

		
			
				
					Chapter 10 Defining Kernels

					// This compiles the kernel named by the specified template

					// parameter using the "fast relaxed math" build option.

					program p(Q.get_context());

					p.build_with_kernel_type<class Add>("-cl-fast-relaxed-math");

					Q.submit([&](handler& h) {

					accessor data_acc {data_buf, h};

					h.parallel_for<class Add>(

					// This uses the previously compiled kernel.

					p.get_kernel<class Add>(),

					range{size},

					[=](id<1> i) {

					data_acc[i] = data_acc[i] + 1;

					});

					});

					Figure 10-9. Compiling kernel lambdas with build options

					In this example, a program object is created from a SYCL context, and

					the kernel defined by the specified template parameter is built using the

					build_with_kernel_typefunction. For this example, the program build

					options -cl-fast-relaxed-mathindicate that the kernel compiler can use

					a faster math library with relaxed precision, but the program build options

					are optional and may be omitted if no special program build options are

					required. The template parameter naming the kernel lambda is required in

					this case, to identify which kernel to compile.

					A program object may also be created from a context and a specific list

					of devices, rather than all the devices in the context, allowing a program

					object for one set of devices to be compiled with different build options

					than those of another program object for a different set of devices.

					The previously compiled kernel is passed to the parallel_for

					using the get_kernelfunction in addition to the usual kernel lambda

					expression. This ensures that the previously compiled kernel that was built

					using the relaxed math library gets used. If the previously compiled kernel

					is not passed to the parallel_for, then the kernel will be compiled again,

					without any special build options. This may be functionally correct, but it

					is certainly not the intended behavior!

					256

					[bookmark: 278_0]
					[bookmark: 278_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 10 Defining Kernels

					In many cases, such as in the simple example shown earlier, these

					additional steps are unlikely to produce a noticeable change in application

					behavior and may be omitted for clarity, but they should be considered

					when tuning an application for performance.

					IMPROVING INTEROPERABILITY AND PROGRAM OBJECT MANAGEMENT

					although the sYCl interfaces for interoperability and program object

					management described in this chapter are useful and functional, they are

					likely to be improved and enhanced in future versions of sYCl and DpC++.

					please refer to the latest sYCl and DpC++ documentation to find updates that

					were not available or not stable enough to include in this book!

					Summary

					In this chapter, we explored different ways to define kernels. We described

					how to seamlessly integrate into existing C++ codebases by representing

					kernels as C++ lambda expressions or named function objects. For new

					codebases, we also discussed the pros and cons of the different kernel

					representations, to help choose the best way to define kernels based on the

					needs of the application or library.

					We also described how to interoperate with other APIs, either by

					creating a kernel from an API-defined source language or intermediate

					representation or by creating a kernel object from a handle to an API

					representation of the kernel. Interoperability enables an application

					to migrate from lower-level APIs to SYCL over time or to interface with

					libraries written for other APIs.

					257

					www. dbooks . or g

					[bookmark: 279_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 10 Defining Kernels

					Finally, we described how kernels are typically compiled in a SYCL

					application and how to directly manipulate kernels in program objects to

					control the compilation process. Even though this level of control will not

					be required for most applications, it is a useful technique to be aware of

					when tuning an application.

					Open Access This chapter is licensed under the terms

					of the Creative Commons Attribution 4.0 International

					License (http://creativecommons.org/licenses/by/4.0/), which permits

					use, sharing, adaptation, distribution and reproduction in any medium or

					format, as long as you give appropriate credit to the original author(s) and

					the source, provide a link to the Creative Commons license and indicate if

					changes were made.

					The images or other third party material in this chapter are included

					in the chapter’s Creative Commons license, unless indicated otherwise

					in a credit line to the material. If material is not included in the chapter’s

					Creative Commons license and your intended use is not permitted by

					statutory regulation or exceeds the permitted use, you will need to obtain

					permission directly from the copyright holder.

					258

				

			

		

		
			
				
					
				
			

			
				
					CHAPTER 11

					Vectors

					Vectors are collections of data. These can be useful because parallelism in

					our computers comes from collections of compute hardware, and data is

					often processed in related groupings (e.g., the color channels in an RGB

					pixel). Sound like a marriage made in heaven? It is so important, we’ll

					spend a chapter discussing the merits of vector types and how to utilize

					them. We will not dive into vectorization in this chapter, since that varies

					based on device type and implementations. Vectorization is covered in

					Chapters 15 and 16.

					This chapter seeks to address the following questions:

					•

					•

					What are vector types?

					How much do I really need to know about the vector

					interface?

					•

					•

					Should vector types be used to express parallelism?

					When should I use vector types?

					© Intel Corporation 2021

					J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-5574-2_11

					259

					www. dbooks . or g

					[bookmark: 281_0]
					[bookmark: 281_1]
				

			

		

		
			
				
					Chapter 11 VeCtors

					We discuss the strengths and weaknesses of available vector types

					using working code examples and highlight the most important aspects of

					exploiting vector types.

					How to Think About Vectors

					Vectors are a surprisingly controversial topic when we talk with parallel

					programming experts, and in the authors’ experience, this is because

					different people define and think about the term in different ways.

					There are two broad ways to think about vector data types (a collection

					of data):

					1. As a convenience type, which groups data that you

					might want to refer to and operate on as a group,

					for example, grouping the color channels of a pixel

					(e.g., RGB, YUV) into a single variable (e.g., float3),

					which could be a vector. We could define a pixel

					class or struct and define math operators like + on

					it, but vector types conveniently do this for us out of

					the box. Convenience types can be found in many

					shader languages used to program GPUs, so this way

					of thinking is already common among many GPU

					developers.

					2. As a mechanism to describe how code maps to a

					SIMD instruction set in hardware. For example, in

					some languages and implementations, operations

					on a float8could in theory map to an eight-lane

					SIMD instruction in hardware. Vector types are

					used in multiple languages as a convenient high-

					level alternative to CPU-specific SIMD intrinsics for

					specific instruction sets, so this way of thinking is

					already common among many CPU developers.

					260

					[bookmark: 282_0]
				

			

		

		
			
				
					Chapter 11 VeCtors

					Although these two interpretations are very different, they

					unintentionally became combined and muddled together as SYCL and

					other languages became applicable to both CPUs and GPUs. A vector in

					the SYCL 1.2.1 specification is compatible with either interpretation (we

					will revisit this later), so we need to clarify our recommended thinking in

					DPC++ before going any further.

					Throughout this book, we talk about how work-items can be grouped

					together to expose powerful communication and synchronization

					primitives, such as sub-group barriers and shuffles. For these operations to

					be efficient on vector hardware, there is an assumption that different work-

					items in a sub-group combine and map to SIMD instructions. Said another

					way, multiple work-items are grouped together by the compiler, at which

					point they can map to SIMD instructions in the hardware. Remember from

					Chapter 4 that this is a basic premise of SPMD programming models that

					operate on top of vector hardware, where a single work-item constitutes

					a lane of what might be a SIMD instruction in hardware, instead of a

					work-item defining the entire operation that will be a SIMD instruction in

					the hardware. You can think of the compiler as always vectorizing across

					work-items when mapping to SIMD instructions in hardware, when

					programming in a SPMD style with the DPC++ compiler.

					For the features and hardware described in this book, vectors are

					useful primarily for the first interpretation in this section—vectors are

					convenience types that should not be thought of as mapping to SIMD

					instructions in hardware. Work-items are grouped together to form SIMD

					instructions in hardware, on the platforms where that applies (CPUs,

					GPUs). Vectors should be thought of as providing convenient operators

					such as swizzles and math functions that make common operations on

					groups of data concise within our code (e.g., adding two RGB pixels).

					For developers coming from languages that don’t have vectors or

					from GPU shading languages, we can think of SYCL vectors as local to

					a work-item in that if there is an addition of two four-element vectors,

					that addition might take four instructions in the hardware (it would be

					261

					www. dbooks . or g

					[bookmark: 283_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 11 VeCtors

					scalarized from the perspective of the work-item). Each element of the

					vector would be added through a different instruction/clock cycle in the

					hardware. With this interpretation, vectors are a convenience in that we

					can add two vectors in a single operation in our source code, as opposed to

					performing four scalar operations in the source.

					For developers coming from a CPU background, we should know that

					implicit vectorization to SIMD hardware occurs by default in the compiler

					in a few ways independent of the vector types. The compiler performs this

					implicit vectorization across work-items, extracts the vector operations

					from well-formed loops, or honors vector types when mapping to vector

					instructions—see Chapter 16 for more information.

					OTHER IMPLEMENTATIONS POSSIBLE!

					Different compilers and implementations of sYCL and DpC++ can in theory

					make different decisions on how vector data types in code map to vector

					hardware instructions. We should read a vendor’s documentation and

					optimization guides to understand how to write code that will map to efficient

					sIMD instructions. this book is written principally against the DpC++ compiler,

					so documents the thinking and programming patterns that it is built around.

					CHANGES ARE ON THE HORIZON

					We have just said to consider vector types as convenience types and to expect

					vectorization across work-items when thinking about the mapping to hardware

					on devices where that makes sense. this is expected to be the default

					interpretation in the DpC++ compiler and toolchain going forward. however,

					there are two additional future-looking changes to be aware of.

					First, we can expect some future DpC++ features that will allow us to

					write explicit vector code that maps directly to sIMD instructions in the

					hardware, particularly for experts who want to tune details of code for a

					262

					[bookmark: 284_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 11 VeCtors

					specific architecture and take control from the compiler vectorizers. this is

					a niche feature that will be used by very few developers, but we can expect

					programming mechanisms to exist eventually where this is possible. those

					programming mechanisms will make it very clear which code is written in an

					explicit vector style, so that there isn’t confusion between the code we write

					today and that new more explicit (and less portable) style.

					second, the need for this section of the book (talking about interpretations of

					vectors) highlights that there is confusion on what a vector means, and that

					will be solved in sYCL in the future. there is a hint of this in the sYCL 2020

					provisional specification where a math array type (marray) has been described,

					which is explicitly the first interpretation from this section—a convenience type

					unrelated to vector hardware instructions. We should expect another type to

					also eventually appear to cover the second interpretation, likely aligned with

					the C++ std::simdtemplates. With these two types being clearly associated

					with specific interpretations of a vector data type, our intent as programmers

					will be clear from the code that we write. this will be less error prone and less

					confusing and may even reduce the number of heated discussions between

					expert developers when the question arises “What is a vector?”

					Vector Types

					Vector types in SYCL are cross-platform class templates that work

					efficiently on devices as well as in host C++ code and allow sharing of

					vectors between the host and its devices. Vector types include methods

					that allow construction of a new vector from a swizzled set of component

					elements, meaning that elements of the new vector can be picked in an

					arbitrary order from elements of the old vector. vecis a vector type that

					compiles down to the built-in vector types on target device backends,

					where possible, and provides compatible support on the host.

					The vecclass is templated on its number of elements and its element

					type. The number of elements parameter, numElements, can be one of 1,

					263

					www. dbooks . or g

					[bookmark: 285_0]
					[bookmark: 285_1]
				

			

		

		
			
				
					Chapter 11 VeCtors

					2, 3, 4, 8, or 16. Any other value will produce a compilation failure. The

					element type parameter, dataT, must be one of the basic scalar types

					supported in device code.

					The SYCL vecclass template provides interoperability with the

					underlying vector type defined by vector_twhich is available only when

					compiled for the device. The vecclass can be constructed from an instance

					of vector_tand can implicitly convert to an instance of vector_tin

					order to support interoperability with native SYCL backends from a kernel

					function (e.g., OpenCL backends). An instance of the vecclass template

					can also be implicitly converted to an instance of the data type when the

					number of elements is 1 in order to allow single-element vectors and

					scalars to be easily interchangeable.

					For our programming convenience, SYCL provides a number of

					type aliases of the form using <type><elems> = vec<<storage-type>,

					<elems>>, where <elems>is 2, 3, 4, 8, and 16 and pairings of <type>and

					<storage-type>for integral types are char⇔ int8_t, uchar⇔ uint8_t,

					short⇔ int16_t, ushort⇔ uint16_t, int⇔ int32_t, uint⇔

					uint32_t, long⇔ int64_t, and ulong⇔ uint64_tand for floating-

					point types half, float, and double. For example, uint4is an alias to

					vec<uint32_t, 4> and float16is an alias to vec<float, 16>.

					Vector Interface

					The functionality of vector types is exposed through the class vec. The

					vecclass represents a set of data elements that are grouped together. The

					interfaces of the constructors, member functions, and non-member functions

					of the vecclass template are described in Figures 11-1, 11-4, and 11-5.

					The XYZW members listed in Figure 11-2 are available only when

					numElements <= 4. RGBA members are available only when numElements

					== 4.

					The members lo, hi, odd, and evenshown in Figure 11-3 are available

					only when numElements > 1.

					264

					[bookmark: 286_0]
					[bookmark: 286_1]
				

			

		

		
			
				
					Chapter 11 VeCtors

					vec Class declaration

					template <typename dataT, int numElements> class vec;

					vec Class Members

					using element_type = dataT;

					vec();

					explicit vec(const dataT &arg);

					template <typename … argTN> vec(const argTN&... args);

					vec(const vec<dataT, numElements> &rhs);

					#ifdef __SYCL_DEVICE_ONLY__

					vec(vector_t openclVector);

					operator vector_t() const;

					#endif

					// available on device only

					operator dataT() const; // Available only if numElements == 1

					size_t get_count() const;

					size_t get_size() const;

					template <typename convertT, rounding_mode roundingMode>

					vec<convertT, numElements> convert() const;

					template <typename asT> asT as() const;

					Figure 11-1. vec class declaration and member functions

					template<int… swizzleindexes>

					__swizzled_vec__ swizzle() const;

					__swizzled_vec__ XYZW_ACCESS() const;

					__swizzled_vec__ RGBA_ACCESS() const;

					__swizzled_vec__ INDEX_ACCESS() const;

					#ifdef SYCL_SIMPLE_SWIZZLES

					// Available only when numElements <= 4

					// XYZW_SWIZZLE is all permutations with repetition of:

					// x, y, z, w, subject to numElements

					__swizzled_vec__ XYZW_SWIZZLE() const;

					// Available only when numElements == 4

					// RGBA_SWIZZLE is all permutations with repetition of: r, g, b, a.

					__swizzled_vec__ RGBA_SWIZZLE() const;

					#endif

					Figure 11-2. swizzled_vec member functions

					265

					www. dbooks . or g

					[bookmark: 287_0]
					[bookmark: 287_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 11 VeCtors

					__swizzled_vec__ lo() const;

					__swizzled_vec__ hi() const;

					__swizzled_vec__ odd() const;

					__swizzled_vec__ even() const;

					template <access::address_space addressSpace>

					void load(size_t offset, mult_ptr ptr<dataT, addressSpace> ptr);

					template <access::address_space addressSpace>

					voidstore(size_t offset, mult_ptrptr<dataT,addressSpace> ptr)const;

					vec<dataT, numElements> &operator=(const vec<dataT,numElements> &rhs);

					vec<dataT, numElements> &operator=(const dataT &rhs);

					vec<RET, numElements> operator!();

					// Not available for floating point types:

					vec<dataT, numElements> operator~();

					Figure 11-3. vec operator interface

					Figure 11-4. vec member functions

					266

					[bookmark: 288_0]
					[bookmark: 288_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 11 VeCtors

					Figure 11-5. vec non-member functions

					Load and Store Member Functions

					Vector load and store operations are members of the vecclass for loading

					and storing the elements of a vector. These operations can be to or from

					an array of elements of the same type as the channels of the vector. An

					example is shown in Figure 11-6.

					267

					www. dbooks . or g

					[bookmark: 289_0]
					[bookmark: 289_1]
					[bookmark: 289_2]
				

			

		

		
			
				
					Chapter 11 VeCtors

					EXIIHU IS%XIꢀIS'DWDꢁꢂ

					TXHXH 4ꢂ

					4ꢃVXEPLWꢀ>ꢄ@ꢀKDQGOHUꢄ Kꢁꢅ^

					DFFHVVRU EXI^IS%XIꢆꢅK`ꢂ

					KꢃSDUDOOHOBIRUꢀVL]Hꢆꢅ> @ꢀLGꢇꢈ!ꢅLG[ꢁ^

					VL]HBW RIIVHWꢅ ꢅLG[>ꢉ@ꢊꢈꢋꢂ

					IORDWꢈꢋꢅLQSIꢈꢋꢂ

					LQSIꢈꢋꢃORDGꢀRIIVHWꢆꢅEXIꢃJHWBSRLQWHUꢀꢁꢁꢂ

					IORDWꢈꢋꢅUHVXOWꢅ ꢅLQSIꢈꢋꢅꢌꢅꢍꢃꢉIꢂ

					UHVXOWꢃVWRUHꢀRIIVHWꢆꢅEXIꢃJHWBSRLQWHUꢀꢁꢁꢂ

					`ꢁꢂ

					`ꢁꢂ

					Figure 11-6. Use of load and store member functions.

					In the vecclass, dataTand numElementsare template parameters that

					reflect the component type and dimensionality of a vec.

					The load()member function template will read values of type dataT

					from the memory at the address of the multi_ptr, offset in elements of

					dataTby numElements*offset, and write those values to the channels of

					the vec.

					The store()member function template will read channels of the vec

					and write those values to the memory at the address of the multi_ptr, offset

					in elements of dataTby numElements*offset.

					The parameter is a multi_ptrrather than an accessor so that locally

					created pointers can also be used as well as pointers passed from the host.

					The data type of the multi_ptris dataT,the data type of the

					components of the vecclass specialization. This requires that the pointer

					passed to either load()or store()must match the type of the vec

					instance itself.

					268

					[bookmark: 290_0]
					[bookmark: 290_1]
				

			

		

		
			
				
					Chapter 11 VeCtors

					Swizzle Operations

					In graphics applications, swizzling means rearranging the data elements

					of a vector. For example, if a = {1, 2, 3, 4,}, and knowing that the

					components of a four-element vector can be referred to as {x, y, z, w},

					we could write b = a.wxyz().The result in the variable bwould be

					{4, 1, 2, 3}. This form of code is common in GPU applications where

					there is efficient hardware for such operations. Swizzles can be performed

					in two ways:

					•

					By calling the swizzle member function of a vec, which

					takes a variadic number of integer template arguments

					between 0and numElements-1, specifying swizzle

					indices

					•

					By calling one of the simple swizzle member functions

					such as XYZW_SWIZZLEand RGBA_SWIZZLE

					Note that the simple swizzle functions are only available for up to

					four-element vectors and are only available when the macro SYCL_SIMPLE_

					SWIZZLESis defined before including sycl.hpp. In both cases, the return

					type is always an instance of __swizzled_vec__, an implementation-

					defined temporary class representing a swizzle of the original vecinstance.

					Both the swizzle member function template and the simple swizzle

					member functions allow swizzle indexes to be repeated. Figure 11-7 shows

					a simple usage of __swizzled_vec__.

					269

					www. dbooks . or g

					[bookmark: 291_0]
					[bookmark: 291_1]
				

			

		

		
			
				
					Chapter 11 VeCtors

					constexpr int size = 16;

					std::array<float4, size> input;

					for (int i = 0; i < size; i++)

					input[i] = float4(8.0f, 6.0f, 2.0f, i);

					buffer B(input);

					queue Q;

					Q.submit([&](handler& h) {

					accessor A{B, h};

					// We can access the individual elements of a vector by using

					// the functions x(), y(), z(), w() and so on.

					//

					// "Swizzles" can be used by calling a vector member equivalent

					// to the swizzle order that we need, for example zyx() or any

					// combination of the elements. The swizzle need not be the same

					// size as the original vector.

					h.parallel_for(size, [=](id<1> idx) {

					auto

					b = A[idx];

					float w = b.w();

					float4 sw = b.xyzw();

					sw = b.xyzw() * sw.wzyx();;

					sw = sw + w;

					A[idx] = sw.xyzw();

					});

					});

					Figure 11-7. Example of using the __swizzled_vec__ class

					Vector Execution Within a Parallel Kernel

					As described in Chapters 4 and 9, a work-item is the leaf node of

					the parallelism hierarchy and represents an individual instance of a

					kernel function. Work-items can be executed in any order and cannot

					communicate or synchronize with each other except through atomic

					memory operations to local and global memory or through group

					collective functions (e.g., shuffle, barrier).

					As described at the start of this chapter, a vector in DPC++ should be

					interpreted as a convenience for us when writing code. Each vector is local

					to a single work-item (instead of relating to vectorization in hardware) and

					270

					[bookmark: 292_0]
					[bookmark: 292_1]
					[bookmark: 292_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 11 VeCtors

					can therefore be thought of as equivalent to a private array of numElements

					in our work-item. For example, the storage of a “float4 y4” declaration is

					equivalent to float y4[4]. Consider the example shown in Figure 11-8.

					4ꢀSDUDOOHOBIRUꢁꢂꢃꢄ> @ꢁLGꢅꢆ!ꢄLꢇ^

					«ꢄ«

					IORDWꢄꢄ[ꢄꢄ ꢄD>L@ꢈ

					IORDWꢍꢄ\ꢍꢄ ꢄE>L@ꢈ

					«ꢄ«

					ꢉꢉꢄLꢄ ꢄꢊꢃꢄꢆꢃꢄꢋꢃꢄ«ꢃꢄꢌ

					ꢉꢉꢄLꢄ ꢄꢊꢃꢄꢆꢃꢄꢋꢃꢄ«ꢃꢄꢌ

					`ꢇꢈ

					Figure 11-8. Vector execution example

					For the scalar variable x, the result of kernel execution with multiple

					work-items on hardware that has SIMD instructions (e.g., CPUs, GPUs)

					might use a vector register and SIMD instructions, but the vectorization

					is across work-items and unrelated to any vector type in our code. Each

					work-item could operate on a different location in the implicit vec_x, as

					shown in Figure 11-9. The scalar data in a work-item can be thought of as

					being implicitly vectorized (combined into SIMD hardware instructions)

					across work-items that happen to execute at the same time, in some

					implementations and on some hardware, but the work-item code that we

					write does not encode this in any way—this is at the core of the SPMD style

					of programming.

					Figure 11-9. Vector expansion from scalar variable x to vec_x[8]

					With the implicit vector expansion from scalar variable xto vec_x[8]

					by the compiler as shown in Figure 11-9, the compiler creates a SIMD

					operation in hardware from a scalar operation that occurs in multiple

					work-items.

					271

					www. dbooks . or g

					[bookmark: 293_0]
					[bookmark: 293_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 11 VeCtors

					For the vector variable y4, the result of kernel execution for multiple

					work-items, for example, eight work-items, does not process the

					vec4 by using vector operations in hardware. Instead each work-item

					independently sees its own vector, and the operations on elements on

					that vector occur across multiple clock cycles/instructions (the vector is

					scalarized by the compiler), as shown in Figure 11-10.

					Figure 11-10. Vertical expansion to equivalent of vec_y[8][4] of y4

					across eight work-items

					Each work-item sees the original data layout of y4, which provides an

					intuitive model to reason about and tune. The performance downside

					is that the compiler has to generate gather/scatter memory instructions

					for both CPUs and GPUs, as shown in Figure 11-11, (the vectors are

					contiguous in memory and neighboring work-items operating on different

					vectors in parallel), so scalars are often an efficient approach over explicit

					vectors when a compiler will vectorize across work-items (e.g., across a

					sub-group). See Chapters 15 and 16 for more details.

					272

					[bookmark: 294_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 11 VeCtors

					4ꢀSDUDOOHOBIRUꢁꢂꢃꢄ> @ꢁLGꢅꢆ!ꢄLꢇ^

					«ꢄ«

					IORDWꢈꢄ\ꢈꢄ ꢄE>L@ꢉ

					ꢊꢊꢄLꢄ ꢄꢋꢃꢄꢆꢃꢄꢌꢃꢄ«ꢃꢄꢍ

					«ꢄ«

					ꢊꢊꢄ³GRZRUN´ꢄH[SHFWVꢄ\ꢈꢄZLWKꢄYHFB\>ꢂ@>ꢈ@ꢄGDWDꢄOD\RXW

					IORDW [ꢄ ꢄGRZRUNꢁꢎ\ꢈꢇꢉ

					`ꢇꢉ

					Figure 11-11. Vector code example with address escaping

					When the compiler is able to prove that the address of y4does not

					escape from the current kernel work-item or all callee functions are to be

					inlined, then the compiler may perform optimizations that act as if there

					was a horizontal unit-stride expansion to vec_y[4][8]from y4using a set

					of vector registers, as shown in Figure 11-12. In this case, compilers can

					achieve optimal performance without generating gather/scatter SIMD

					instructions for both CPUs and GPUs. The compiler optimization reports

					provide information to programmers about this type of transformation,

					whether it occurred or not, and can provide hints on how to tweak our

					code for increased performance.

					Figure 11-12. Horizontal unit-stride expansion to vec_y[4][8] of y4

					273

					www. dbooks . or g

					[bookmark: 295_0]
					[bookmark: 295_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 11 VeCtors

					Vector Parallelism

					Although vectors in source code within DPC++ should be interpreted as

					convenience tools that are local to only a single work-item, this chapter

					on vectors would not be complete without some mention of how SIMD

					instructions in hardware operate. This discussion is not coupled to vectors

					within our source code, but provides orthogonal background that will

					be useful as we progress to the later chapters of this book that describe

					specific device types (GPU, CPU, FPGA).

					Modern CPUs and GPUs contain SIMD instruction hardware that

					operate on multiple data values contained in one vector register or a

					register file. For example, with Intel x86 AVX-512 and other modern CPU

					SIMD hardware, SIMD instructions can be used to exploit data parallelism.

					On CPUs and GPUs that provide SIMD hardware, we can consider a vector

					addition operation, for example, on an eight-element vector, as shown in

					Figure 11-13.

					Figure 11-13. SIMD addition with eight-way data parallelism

					The vector addition in this example could execute in a single

					instruction on vector hardware, adding the vector registers vec_xand

					vec_yin parallel with that SIMD instruction.

					Exposing potential parallelism in a hardware-agnostic way ensures

					that our applications can scale up (or down) to fit the capabilities of

					different platforms, including those with vector hardware instructions.

					274

					[bookmark: 296_0]
					[bookmark: 296_1]
				

			

		

		
			
				
					Chapter 11 VeCtors

					Striking the right balance between work-item and other forms of

					parallelism during application development is a challenge that we must all

					engage with, and that is covered more in Chapters 15, 16, and 17.

					Summary

					There are multiple interpretations of the term vector within programming

					languages, and understanding the interpretation that a particular language

					or compiler has been built around is important when we want to write

					performant and scalable code. DPC++ and the DPC++ compiler have

					been built around the idea that vectors in source code are convenience

					functions local to a work-item and that implicit vectorization by the

					compiler across work-items may map to SIMD instructions in the

					hardware. When we want to write code which maps directly to vector

					hardware explicitly, we should look to vendor documentation and future

					extensions to SYCL and DPC++. Writing our kernels using multiple

					work-items (e.g., ND-range) and relying on the compiler to vectorize

					across work-items should be how most applications are written because

					doing so leverages the powerful abstraction of SPMD, which provides an

					easy-to-reason-about programming model, and that provides scalable

					performance across devices and architectures.

					This chapter has described the vecinterface, which offers convenience

					out of the box when we have groupings of similarly typed data that we

					want to operate on (e.g., a pixel with multiple color channels). It has also

					touched briefly on SIMD instructions in hardware, to prepare us for more

					detailed discussions in Chapters 15 and 16.

					275

					www. dbooks . or g

					[bookmark: 297_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 11 VeCtors

					Open Access This chapter is licensed under the terms

					of the Creative Commons Attribution 4.0 International

					License (http://creativecommons.org/licenses/by/4.0/), which permits

					use, sharing, adaptation, distribution and reproduction in any medium or

					format, as long as you give appropriate credit to the original author(s) and

					the source, provide a link to the Creative Commons license and indicate if

					changes were made.

					The images or other third party material in this chapter are included

					in the chapter’s Creative Commons license, unless indicated otherwise

					in a credit line to the material. If material is not included in the chapter’s

					Creative Commons license and your intended use is not permitted by

					statutory regulation or exceeds the permitted use, you will need to obtain

					permission directly from the copyright holder.

					276

				

			

		

		
			
				
					
				
			

			
				
					CHAPTER 12

					Device Information

					Chapter 2 introduced us to the mechanisms that direct work to a particular

					device—controlling where code executes. In this chapter, we explore how to

					adapt to the devices that are present at runtime.

					We want our programs to be portable. In order to be portable, we

					need our programs to adapt to the capabilities of the device. We can

					parameterize our programs to only use features that are present and to

					tune our code to the particulars of devices. If our program is not designed

					to adapt, then bad things can happen including slow execution or program

					failures.

					Fortunately, the creators of the SYCL specification thought about this

					and gave us interfaces to let us solve this problem. The SYCL specification

					defines a deviceclass that encapsulates a device on which kernels may

					be executed. The ability to query the device class, so that our program can

					adapt to the device characteristics and capabilities, is the heart of what this

					chapter teaches.

					© Intel Corporation 2021

					J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-5574-2_12

					277

					www. dbooks . or g

					[bookmark: 299_0]
					[bookmark: 299_1]
				

			

		

		
			
				
					
				
			

			
				
					ChaPter 12 DeviCe information

					Many of us will start with having logic to figure out “Is there a GPU

					present?” to inform the choices our program will make as it executes.

					That is the start of what this chapter covers. As we will see, there is much

					more information available to help us make our programs robust and

					performant.

					Parameterizing a program can help with correctness, portability,

					performance portability, and future proofing.

					This chapter dives into the most important queries and how to use

					them effectively in our programs.

					Device-specific properties are queryable using get_info, butDPC++

					diverges from SYCL 1.2.1 in that it fully overloads get_infoto alleviate

					the need to use get_work_group_infofor work-group information that

					is really device-specific information. DPC++ does not support use of

					get_work_group_info. This change means that device-specific kernel and

					work-group properties are properly found as queries for device-specific

					properties (get_info). This corrects a confusing historical anomaly still

					present in SYCL 1.2.1 that was inherited from OpenCL.

					Refining Kernel Code to Be More

					Prescriptive

					It is useful to consider that our coding, kernel by kernel, will fall broadly

					into one of three categories:

					•

					•

					Generic kernel code: Run anywhere, not tuned to a

					specific class of device.

					Device type–specific kernel code: Run on a type of

					device (e.g., GPU, CPU, FPGA), not tuned to specific

					models of a device type. This is very useful because

					278

					[bookmark: 300_0]
				

			

		

		
			
				
					
				
			

			
				
					ChaPter 12 DeviCe information

					many device types share common features, so it's safe

					to make some assumptions that would not apply to

					fully general code written for all devices.

					•

					Tuned device-specific kernel code: Run on a type of

					device, with tuning that reacts to specific parameters

					of a device—this covers a broad range of possibilities

					from a small amount of tuning to very detailed

					optimization work.

					it is our job as programmers to determine when different patterns

					(Chapter 14) are needed for different device types. We dedicate

					Chapters 14, 15, 16, and 17 to illuminating this important thinking.

					It is most common to start by implementing generic kernel code to get

					it working. Chapter 2 specifically talks about what methods are easiest to

					debug when getting started with a kernel implementation. Once we have

					a kernel working, we may evolve it to target the capabilities of a specific

					device type or device model.

					Chapter 14 offers a framework of thinking to consider parallelism

					first, before we dive into device considerations. It is our choice of pattern

					(aka algorithm) that dictates our code, and it is our job as programmers

					to determine when different patterns are needed for different devices.

					Chapters 15 (GPU), 16 (CPU), and 17 (FPGA) dive more deeply into the

					qualities that distinguish these device types and motivate a choice in

					pattern to use. It is these qualities that motivate us to consider writing

					distinct versions of kernels for different devices when the approaches

					(pattern choice) on different device types differ.

					When we have a kernel written for a specific type of device (e.g., a

					specific CPU, GPU, FPGA, etc.), it is logical to adapt it to specific vendors

					or even models of such devices. Good coding style is to parameterize code

					based on features (e.g., item size support found from a device query).

					279

					www. dbooks . or g

				

			

		

		
			
				
					
				
			

			
				
					ChaPter 12 DeviCe information

					We should write code to query parameters that describe the actual

					capabilities of a device instead of its marketing information; it is very bad

					programming practice to query the model number of a device and react to

					that—such code is less portable.

					It is common to write a different kernel for each device type that

					we want to support (a GPU version of a kernel and an FPGA version of

					a kernel and maybe a generic version of a kernel). When we get more

					specific, to support a specific device vendor or even device model, we may

					benefit when we can parameterize a kernel rather than duplicate it. We

					are free to do either, as we see fit. Code cluttered with too many parameter

					adjustments may be hard to read or excessively burdened at runtime. It is

					common however that parameters can fit neatly into a single version of a

					kernel.

					Parameterizing makes the most sense when the algorithm is broadly

					the same but has been tuned for the capabilities of a specific device.

					Writing a different kernel is much cleaner when using a completely

					different approach, pattern, or algorithm.

					How to Enumerate Devices and Capabilities

					Chapter 2 enumerates and explains five methods for choosing a device

					on which to execute. Essentially, Method#1 was the least prescriptive run

					it somewhere, and we evolve to the most prescriptive Method#5 which

					considered executing on a fairly precise model of a device from a family of

					devices. The enumerated methods in between gave a mix of flexibility and

					prescriptiveness. Figures 12-1, 12-2, and 12-3 help to illustrate how we can

					select a device.

					280

					[bookmark: 302_0]
				

			

		

		
			
				
					
				
			

			
				
					ChaPter 12 DeviCe information

					Figure 12-1 shows that even if we allow the implementation to select

					a default device for us (Method#1 in Chapter 2), we can still query for

					information about the selected device.

					Figure 12-2 shows how we can try to set up a queue using a specific

					device (in this case, a GPU), but fall back explicitly on the host if no GPU

					is available. This gives us some control of our device choice. If we simply

					used a default queue, we could end up with an unexpected device type

					(e.g., a DSP, FPGA). If we explicitly want to use the host device if there is

					no GPU device, this code does that for us. Recall that the host device is

					always guaranteed to exist, so we do not need to worry about using the

					host_selector.

					It is not recommended that we use the solution shown in Figure 12-2.

					In addition to appearing a little scary and error prone, Figure 12-2 does

					not give us control over what GPU is selected because it is implementation

					dependent which GPU we get if more than one is available. Despite being

					both instructive and functional, there is a better way. It is recommended

					that we write custom device selectors as shown in the next code example

					(Figure 12-3).

					Custom Device Selector

					Figure 12-3 uses a custom device selector. Custom device selectors were

					first discussed in Chapter 2 as Method#5 for choosing where our code runs

					(Figure 2-15). The custom device selector causes its operator(), shown in

					Figure 12-3, to be invoked for each device available to the application. The

					device selected is the one that receives the highest score.1 In this example,

					we will have a little fun with our selector:

					1If our device selector returned only negative values, then the my_selector()

					would throw a runtime_errorexception as expected on non-GPU systems in

					Figure 12-2. Since we return a positive value for the host, that cannot happen in

					Figure 12-3.

					281

					www. dbooks . or g

					[bookmark: 303_0]
					[bookmark: 303_1]
					[bookmark: 303_2]
				

			

		

		
			
				
					
				
			

			
				
					ChaPter 12 DeviCe information

					•

					•

					Reject GPUs with a vendor name including the word

					“Martian” (return –1).

					Favor GPUs with a vendor name including the word

					“ACME” (return 824).

					•

					•

					•

					Any other GPU is a good one (return 799).

					We pick the host device if no GPU is present (return 99).

					All other devices are ignored (return –1).

					The next section, “Being Curious: get_info<>,” dives into the rich

					information that get_devices(), get_platforms(), and get_info<>

					offer. Those interfaces open up any type of logic we might want to utilize

					to pick our devices, including the simple vendor name checks shown in

					Figures 2-15 and 12-3.

					queue Q;

					std::cout << "By default, we are running on "

					<< Q.get_device().get_info<info::device::name>() << "\n";

					// sample output:

					// By default, we are running on Intel(R) Gen9 HD Graphics NEO.

					Figure 12-1. Device we have been assigned by default

					Queries about devices rely on installed software (special user-level

					drivers), to respond regarding a device. SYCL and DPC++ rely on this,

					just as an operating system needs drivers to access hardware—it is

					not sufficient that the hardware simply be installed in a machine.

					282

					[bookmark: 304_0]
				

			

		

		
			
				
					ChaPter 12 DeviCe information

					auto GPU_is_available = false;

					try {

					device testForGPU((gpu_selector()));

					GPU_is_available = true;

					} catch (exception const& ex) {

					std::cout << "Caught this SYCL exception: " << ex.what() << std::endl;

					}

					auto Q = GPU_is_available ? queue(gpu_selector()) : queue(host_selector());

					std::cout << "After checking for a GPU, we are running on:\n "

					<< Q.get_device().get_info<info::device::name>() << "\n";

					// sample output using a system with a GPU:

					// After checking for a GPU, we are running on:

					// Intel(R) Gen9 HD Graphics NEO.

					//

					// sample output using a system with an FPGA accelerator, but no GPU:

					// Caught this SYCL exception: No device of requested type available.

					// ...(CL_DEVICE_NOT_FOUND)

					// After checking for a GPU, we are running on:

					// SYCL host device.

					Figure 12-2. Using try-catch to select a GPU device if possible, host

					device if not

					283

					www. dbooks . or g

					[bookmark: 305_0]
					[bookmark: 305_1]
				

			

		

		
			
				
					ChaPter 12 DeviCe information

					class my_selector : public device_selector {

					public:

					int operator()(const device &dev) const {

					int score = -1;

					// We prefer non-Martian GPUs, especially ACME GPUs

					if (dev.is_gpu()) {

					if (dev.get_info<info::device::vendor>().find("ACME")

					!= std::string::npos) score += 25;

					if (dev.get_info<info::device::vendor>().find("Martian")

					== std::string::npos) score += 800;

					}

					// Give host device points so it is used if no GPU is available.

					// Without these next two lines, systems with no GPU would select

					// nothing, since we initialize the score to a negative number above.

					if (dev.is_host()) score += 100;

					return score;

					}

					};

					int main() {

					auto Q = queue{ my_selector{} };

					std::cout << "After checking for a GPU, we are running on:\n "

					<< Q.get_device().get_info<info::device::name>() << "\n";

					// Sample output using a system with a GPU:

					// After checking for a GPU, we are running on:

					// Intel(R) Gen9 HD Graphics NEO.

					//

					// Sample output using a system with an FPGA accelerator, but no GPU:

					// After checking for a GPU, we are running on:

					// SYCL host device.

					return 0;

					}

					Figure 12-3. Custom device selector—our preferred solution

					284

					[bookmark: 306_0]
					[bookmark: 306_1]
				

			

		

		
			
				
					ChaPter 12 DeviCe information

					Being Curious: get_info<>

					In order for our program to “know” what devices are available at runtime,

					we can have our program query available devices from the device class,

					and then we can learn more details using get_info<>to inquire about

					a specific device. We provide a simple program, called curious (see

					Figure 12-4), that uses these interfaces to dump out information for us

					to look at directly. This can be very useful for doing a sanity check when

					developing or debugging a program that uses these interfaces. Failure of

					this program to work as expected can often tell us that the software drivers

					we need are not installed correctly. Figure 12-5 shows sample output from

					this program, with the high-level information about the devices that are

					present.

					// Loop through available platforms

					for (auto const& this_platform : platform::get_platforms()) {

					std::cout << "Found platform: "

					<< this_platform.get_info<info::platform::name>() << "\n";

					// Loop through available devices in this platform

					for (auto const& this_device : this_platform.get_devices()) {

					std::cout << " Device: "

					<< this_device.get_info<info::device::name>() << "\n";

					}

					std::cout << "\n";

					}

					Figure 12-4. Simple use of device query mechanisms: curious.cpp

					285

					www. dbooks . or g

					[bookmark: 307_0]
					[bookmark: 307_1]
					[bookmark: 307_2]
				

			

		

		
			
				
					ChaPter 12 DeviCe information

					% make curious

					dpcpp curious.cpp -o curious

					% ./curious

					Found platform 1...

					Platform: Intel(R) FPGA Emulation Platform for OpenCL(TM)

					Device: Intel(R) FPGA Emulation Device

					Found platform 2...

					Platform: Intel(R) OpenCL HD Graphics

					Device: Intel(R) Gen9 HD Graphics NEO

					Found platform 3...

					Platform: Intel(R) OpenCL

					Device: Intel(R) Xeon(R) E-2176G CPU @ 3.70GHz

					Found platform 4...

					Platform: SYCL host platform

					Device: SYCL host device

					Figure 12-5. Sample output from curious.cpp

					Being More Curious: Detailed Enumeration Code

					We offer a program, which we have named verycurious.cpp (Figure 12-6),

					to illustrate some of the detailed information available using get_info<>.

					Again, we find ourselves writing code like this to help when developing or

					debugging a program. Figure 12-5 shows sample output from this program,

					with the lower-level information about the devices that are present.

					Now that we have shown how to access the information, we will

					discuss the information fields that prove the most important to query and

					act upon in applications.

					286

					[bookmark: 308_0]
					[bookmark: 308_1]
				

			

		

		
			
				
					ChaPter 12 DeviCe information

					template <auto query, typename T>

					void do_query(const T& obj_to_query, const std::string& name, int indent=4)

					{

					std::cout << std::string(indent, ' ') << name << " is '"

					<< obj_to_query.template get_info<query>() << "'\n";

					}

					// Loop through the available platforms

					for (auto const& this_platform : platform::get_platforms()) {

					std::cout << "Found Platform:\n";

					do_query<info::platform::name>(this_platform,

					"info::platform::name");

					do_query<info::platform::vendor>(this_platform,

					"info::platform::vendor");

					do_query<info::platform::version>(this_platform,

					"info::platform::version");

					do_query<info::platform::profile>(this_platform,

					"info::platform::profile");

					// Loop through the devices available in this plaform

					for (auto &dev : this_platform.get_devices()) {

					std::cout << " Device: "

					<< dev.get_info<info::device::name>() << "\n";

					std::cout << "

					is_host(): "

					<< (dev.is_host() ? "Yes" : "No") << "\n";

					std::cout << "

					is_cpu(): "

					<< (dev.is_cpu() ? "Yes" : "No") << "\n";

					std::cout << "

					is_gpu(): "

					<< (dev.is_gpu() ? "Yes" : "No") << "\n";

					std::cout << "

					is_accelerator(): "

					<< (dev.is_accelerator() ? "Yes" : "No") << "\n";

					do_query<info::device::vendor>(dev, "info::device::vendor");

					do_query<info::device::driver_version>(dev,

					"info::device::driver_version");

					do_query<info::device::max_work_item_dimensions>(dev,

					"info::device::max_work_item_dimensions");

					do_query<info::device::max_work_group_size>(dev,

					"info::device::max_work_group_size");

					do_query<info::device::mem_base_addr_align>(dev,

					"info::device::mem_base_addr_align");

					do_query<info::device::partition_max_sub_devices>(dev,

					"info::device::partition_max_sub_devices");

					std::cout << "

					Many more queries are available than shown here!\n";

					}

					std::cout << "\n";

					}

					Figure 12-6. More detailed use of device query mechanisms:

					verycurious.cpp

					287

					www. dbooks . or g

					[bookmark: 309_0]
				

			

		

		
			
				
					ChaPter 12 DeviCe information

					Inquisitive: get_info<>

					The has_extension()interface allows a program to test directly for

					a feature, rather than having to walk through a list of extensions from

					get_info <info::platform::extensions>as printed out by the previous

					code examples. The SYCL 2020 provisional specification has defined new

					mechanisms to query extensions and detailed aspects of devices, but we

					don't cover those features (which are just being finalized) in this book.

					Consult the online oneAPI DPC++ language reference for more information.

					Device Information Descriptors

					Our “curious” program examples, used earlier in this chapter, utilize the

					most used SYCL device class member functions (i.e., is_host, is_cpu,

					is_gpu, is_accelerator, get_info, has_extension). These member

					functions are documented in the SYCL specification in a table titled

					“Member functions of the SYCL device class” (in SYCL 1.2.1, it is Table 4.18).

					The “curious” program examples also queried for information using

					the get_infomember function. There is a set of queries that must be

					supported by all SYCL devices, including a host device. The complete list of

					such items is described in the SYCL specification in a table titled “Device

					information descriptors” (in SYCL 1.2.1, it is Table 4.20).

					Device-Specific Kernel Information

					Descriptors

					Like platforms and devices, we can query information about our kernels

					using a get_infofunction. Such information (e.g., supported work-group

					sizes, preferred work-group size, the amount of private memory required

					per work-item) is device-specific, and so the get_infomember function of

					the kernelclass accepts a deviceas an argument.

					288

					[bookmark: 310_0]
					[bookmark: 310_1]
					[bookmark: 310_2]
				

			

		

		
			
				
					
				
			

			
				
					ChaPter 12 DeviCe information

					DEVICE-SPECIFIC KERNEL INFORMATION IN SYCL 1.2.1

					for historical reasons dating back to openCL naming, SYCL inherited a

					combination of queries named kernel::get_infoand kernel::get_

					work_group_info, returning information about a kernel object and

					information pertaining to a kernel’s execution on a specific device,

					respectively.

					Use of overloading in DPC++ and SYCL (as of 2020 provisional) allows for both

					types of information to be supported through a single get_infoaPi.

					The Specifics: Those of “Correctness”

					We will divide the specifics into information about necessary conditions

					(correctness) and information useful for tuning but not necessary for

					correctness.

					In this first correctness category, we will enumerate conditions that

					should be met in order for kernels to launch properly. Failure to abide by

					these device limitations will lead to program failures. Figure 12-7 shows

					how we can fetch a few of these parameters in a way that the values are

					available for use in host code and in kernel code (via lambda capture). We

					can modify our code to utilize this information; for instance, it could guide

					our code on buffer sizing or work-group sizing.

					Submitting a kernel that does not satisfy these conditions will

					generate an error.

					289

					www. dbooks . or g

					[bookmark: 311_0]
				

			

		

		
			
				
					
				
			

			
				
					ChaPter 12 DeviCe information

					std::cout << "We are running on:\n"

					<< dev.get_info<info::device::name>() << "\n";

					// Query results like the following can be used to calculate how

					// large our kernel invocations should be.

					auto maxWG = dev.get_info<info::device::max_work_group_size>();

					auto maxGmem = dev.get_info<info::device::global_mem_size>();

					auto maxLmem = dev.get_info<info::device::local_mem_size>();

					std::cout << "Max WG size is " << maxWG

					<< "\nMax Global memory size is " << maxGmem

					<< "\nMax Local memory size is " << maxLmem << "\n";

					Figure 12-7. Fetching parameters that can be used to shape a kernel

					Device Queries

					device_type: cpu, gpu, accelerator, custom,2 automatic, host,

					all. These are most often tested by is_host(), is_cpu, is_gpu(),and

					so on (see Figure 12-6):

					max_work_item_sizes:The maximum number of

					work-items that are permitted in each dimension

					of the work-group of the nd_range. The minimum

					value is (1, 1, 1)for non-custom devices.

					max_work_group_size:The maximum number

					of work-items that are permitted in a work-group

					executing a kernel on a single compute unit. The

					minimum value is 1.

					global_mem_size:The size of global memory in

					bytes.

					local_mem_size:The size of local memory in bytes.

					Except for custom devices, the minimum size is 32 K.

					2Custom devices are not discussed in this book. If we find ourselves programming

					a device that identifies itself using the custom type, we will need to study the

					documentation for that device to learn more.

					290

					[bookmark: 312_0]
					[bookmark: 312_1]
					[bookmark: 312_2]
					[bookmark: 312_3]
				

			

		

		
			
				
					
				
			

			
				
					ChaPter 12 DeviCe information

					extensions:Device-specific information not

					specifically detailed in the SYCL specification, often

					vendor-specific, as illustrated in our verycurious

					program (Figure 12-6).

					max_compute_units:Indicative of the amount of

					parallelism available on a device—implementation-

					defined, interpret with care!

					sub_group_sizes:Returns the set of sub-group

					sizes supported by the device.

					usm_device_allocations:Returns trueif this

					device supports device allocations as described in

					explicit USM.

					usm_host_allocations:Returns trueif this device

					can access host allocations.

					usm_shared_allocations:Returns trueif this

					device supports shared allocations.

					usm_restricted_shared_allocations:Returns

					trueif this device supports shared allocations as

					governed by the restrictions of “restricted USM” on

					the device. This property requires that property usm_

					shared_allocationsreturns truefor this device.

					usm_system_allocator:Returns trueif the system

					allocator may be used instead of USM allocation

					mechanisms for shared allocations on this device.

					We advise avoiding max_compute_units in program logic.

					291

					www. dbooks . or g

				

			

		

		
			
				
					ChaPter 12 DeviCe information

					We have found that querying the maximum number of compute

					units should be avoided, in part because the definition isn’t crisp enough

					to be useful in code tuning. Instead of using max_compute_units, most

					programs should express their parallelism and let the runtime map it onto

					available parallelism. Relying on max_compute_unitsfor correctness only

					makes sense when augmented with implementation- and device-specific

					information. Experts might do that, but most developers do not and do not

					need to do so! Let the runtime do its job in this case!

					Kernel Queries

					The mechanisms discussed in Chapter 10, under “Kernels in Program

					Objects,” are needed to perform these kernel queries:

					work_group_size: Returns the maximum work-

					group size that can be used to execute a kernel on a

					specific device

					compile_work_group_size: Returns the work-group

					size specified by a kernel if applicable; otherwise

					returns (0, 0, 0)

					compile_sub_group_size:Returns the sub-group

					size specified by a kernel if applicable; otherwise

					returns 0

					compile_num_sub_groups:Returns the number

					of sub-groups specified by a kernel if applicable;

					otherwise returns 0

					max_sub_group_size:Returns the maximum sub-

					group size for a kernel launched with the specified

					work-group size

					max_num_sub_groups:Returns the maximum

					number of sub-groups for a kernel

					292

					[bookmark: 314_0]
					[bookmark: 314_1]
				

			

		

		
			
				
					
				
			

			
				
					ChaPter 12 DeviCe information

					The Specifics: Those of “Tuning/

					Optimization”

					There are a few additional parameters that can be considered as fine-

					tuning parameters for our kernels. These can be ignored without

					jeopardizing the correctness of a program. These allow our kernels to

					really utilize the particulars of the hardware for performance.

					Paying attention to the results of these queries can help when tuning

					for a cache (if it exists).

					Device Queries

					global_mem_cache_line_size:Size of global

					memory cache line in bytes.

					global_mem_cache_size:Size of global memory

					cache in bytes.

					local_mem_type:The type of local memory

					supported. This can be info::local_mem_

					type::localimplying dedicated local memory

					storage such as SRAM or info::local_mem_

					type::global. The latter type means that local

					memory is just implemented as an abstraction

					on top of global memory with no performance

					gains. For custom devices (only), the local memory

					type can also be info::local_mem_type::none,

					indicating local memory is not supported.

					293

					www. dbooks . or g

					[bookmark: 315_0]
					[bookmark: 315_1]
				

			

		

		
			
				
					ChaPter 12 DeviCe information

					Kernel Queries

					preferred_work_group_size:The preferred

					work-group size for executing a kernel on a specific

					device.

					preferred_work_group_size_multiple:The

					preferred work-group size for executing a kernel on

					a specific device

					Runtime vs. Compile-Time Properties

					The queries described in this chapter are performed through runtime

					APIs (get_info), meaning that the results are not known until

					runtime. This covers many use cases, but the SYCL specification is

					also undergoing work to provide compile-time querying of properties,

					when they can be known by a toolchain, to allow more advanced

					programming techniques such as templating of kernels based on

					properties of devices. Compile-time adaptation of code based on

					queries is not possible with the existing runtime queries, and this

					ability can be important for advanced optimizations or when writing

					kernels that use some extensions. The interfaces were not defined well

					enough yet at the time of writing to describe those interfaces in this

					book, but we can look forward to much more powerful query and code

					adaptation mechanisms that are coming soon in SYCL and DPC++!

					Look to the online oneAPI DPC++ language reference and the SYCL

					specifications for updates.

					294

					[bookmark: 316_0]
					[bookmark: 316_1]
					[bookmark: 316_2]
				

			

		

		
			
				
					
				
			

			
				
					ChaPter 12 DeviCe information

					Summary

					The most portable programs will query the devices that are available in

					a system and adjust their behavior based on runtime information. This

					chapter opens the door to the rich set of information that is available to

					allow such tailoring of our code to adjust to the hardware that is present at

					runtime.

					Our programs can be made more portable, more performance

					portable, and more future-proof by parameterizing our application to

					adjust to the characteristics of the hardware. We can also test that the

					hardware present falls within the bounds of any assumptions we have

					made in the design of our program and either warn or abort when

					hardware is found that lies outside the bounds of our assumptions.

					Open Access This chapter is licensed under the terms

					of the Creative Commons Attribution 4.0 International

					License (http://creativecommons.org/licenses/by/4.0/), which permits

					use, sharing, adaptation, distribution and reproduction in any medium or

					format, as long as you give appropriate credit to the original author(s) and

					the source, provide a link to the Creative Commons license and indicate if

					changes were made.

					The images or other third party material in this chapter are included

					in the chapter’s Creative Commons license, unless indicated otherwise

					in a credit line to the material. If material is not included in the chapter’s

					Creative Commons license and your intended use is not permitted by

					statutory regulation or exceeds the permitted use, you will need to obtain

					permission directly from the copyright holder.

					295

					www. dbooks . or g

					[bookmark: 317_0]
				

			

		

		
			
				
					
				
			

			
				
					CHAPTER 13

					Practical Tips

					This chapter is home to a number of pieces of useful information, practical

					tips, advice, and techniques that have proven useful when programming

					SYCL and using DPC++. None of these topics are covered exhaustively, so

					the intent is to raise awareness and encourage learning more as needed.

					Getting a DPC++ Compiler and Code

					Samples

					Chapter 1 covers how to get the DPC++ compiler (oneapi.com/

					implementations or github.com/intel/llvm) and where to get the code

					samples (www.apress.com/9781484255735—look for Services for this

					book: Source Code). This is mentioned again to emphasize how useful

					© Intel Corporation 2021

					J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-5574-2_13

					297

					[bookmark: 318_0]
					[bookmark: 318_1]
				

			

		

		
			
				
					Chapter 13 praCtiCal tips

					it can be to try the examples (including making modifications!) to gain

					hands-on experience. Join the club of those who know what the code in

					Figure 1-1 actually prints out!

					Online Forum and Documentation

					The Intel Developer Zone hosts a forum for discussing the DPC++

					compiler, DPC++ Library (Chapter 18), DPC++ Compatibility Tool (for

					CUDA migration—discussed later in this chapter), and gdb included in

					the oneAPI toolkit (this chapter touches on debugging too). This is an

					excellent place to post questions about writing code, including suspected

					compiler bugs. You will find posts from some of the book authors on this

					forum doing exactly that, especially while writing this book. The forum is

					available online at https://software.intel.com/en-us/forums/oneapi-

					data-parallel-c-compiler.

					The online oneAPI DPC++ language reference is a great resource

					to find a complete list of the classes and member definitions, details on

					compiler options, and more.

					Platform Model

					A SYCL or DPC++ compiler is designed to act and feel like any other C++

					compiler we have ever used. A notable difference is that a regular C++

					compiler produces code only for a CPU. It is worth understanding the

					inner workings, at a high level, that enable a compiler to produce code for

					a host CPU and devices.

					The platform model (Figure 13-1), used by SYCL and DPC++, specifies

					a host that coordinates and controls the compute work that is performed

					on the devices. Chapter 2 describes how to assign work to devices, and

					Chapter 4 dives into how to program devices. Chapter 12 describes using

					the platform model at various levels of specificity.

					298

					www. dbooks . or g

					[bookmark: 319_0]
					[bookmark: 319_1]
					[bookmark: 319_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 13 praCtiCal tips

					As we discussed in Chapter 2, there is always a device corresponding

					to the host, known as the host device. Providing this guaranteed-to-be-

					available target for device code allows device code to be written assuming

					that at least one device is available, even if it is the host itself! The choice

					of the devices on which to run device code is under program control—it is

					entirely our choice as programmers if, and how, we want to execute code

					on specific devices.

					�¨¦·²µꢀ�±¬·

					�¨¦·²µꢀ�±¬·

					���ꢀ¦²µ¨

					���ꢀ¦²µ¨

					�¨¦·²µꢀ�±¬·

					�¨¦·²µꢀ�±¬·

					���ꢀ¦²µ¨

					���ꢀ¦²µ¨

					���

					���

					�»¨¦¸·¬²±ꢀ�±¬·

					�»¨¦¸·¬²±ꢀ�±¬·

					�¯¬¦¨

					�¯¬¦¨

					�»¨¦¸·¬²±ꢀ�±¬·

					�»¨¦¸·¬²±ꢀ�±¬·

					�¯¬¦¨

					�¯¬¦¨

					��������ꢀ���

					�µ²¦¨¶¶¬±ªꢀ�¯¨°¨±·¶

					�µ²¦¨¶¶¬±ªꢀ�¯¨°¨±·¶

					�²°³¸·¨ꢀ�±¬·

					�ꢀ�³¨¦¬©¬¦ꢀ�¯¤·©²µ°ꢁꢀ�¨¶®·²³ꢀ�¼¶·¨°

					º¬·«ꢀ���ꢀFꢀ�¬¶¦µ¨·¨ꢀ���

					�²°³¸·¨ꢀ�±¬·

					����

					�µ²¦¨¶¶¬±ªꢀ�¯¨°¨±·¶

					�²°³¸·¨ꢀ�±¬·

					�µ²¦¨¶¶¬±ªꢀ�¯¨°¨±·¶

					�²°³¸·¨ꢀ�±¬·

					������

					�¨µ±¨¯ꢀ�¬³¨¯¬±¨

					�¨µ±¨¯ꢀ�¬³¨¯¬±¨

					�¸¶·²°ꢀ�²°³¸·¨ꢀ�±¬· �¸¶·²°ꢀ�²°³¸·¨ꢀ�±¬·

					�¥¶·µ¤¦·

					�¯¤·©²µ°

					�¨µ±¨¯ꢀ�¬³¨¯¬±¨

					�¨µ±¨¯ꢀ�¬³¨¯¬±¨

					�¸¶·²°ꢀ�²°³¸·¨ꢀ�±¬· �¸¶·²°ꢀ�²°³¸·¨ꢀ�±¬·

					����

					���

					�»¨¦¸·¬²±ꢀ�±¬·

					�»¨¦¸·¬²±ꢀ�±¬·

					�¯¬¦¨

					�¯¬¦¨

					�»¨¦¸·¬²±ꢀ�±¬·

					�»¨¦¸·¬²±ꢀ�±¬·

					�¯¬¦¨

					�¯¬¦¨

					����������ꢀ���

					�ꢀ�³¨¦¬©¬¦ꢀ�¯¤·©²µ°ꢁꢀ�¨¶®·²³ꢀ�¼¶·¨°

					º¬·«ꢀ���ꢀºe�±·¨ªµ¤·¨ꢀ���ꢀFꢀ����

					Figure 13-1. Platform model: Can be used abstractly or with

					specificity

					299

					[bookmark: 320_0]
					[bookmark: 320_1]
				

			

		

		
			
				
					Chapter 13 praCtiCal tips

					Multiarchitecture Binaries

					Since our goal is to have a single-source code to support a heterogeneous

					machine, it is only natural to want a single executable file to be the result.

					A multiarchitecture binary (aka a fat binary) is a single binary file that

					has been expanded to include all the compiled and intermediate code

					needed for our heterogeneous machine. The concept of multiarchitecture

					binaries is not new. For example, some operating systems support

					multiarchitecture 32-bit and 64-bit libraries and executables. A

					multiarchitecture binary acts like any other a.outor A.exewe are used

					to—but it contains everything needed for a heterogeneous machine.

					This helps to automate the process of picking the right code to run for a

					particular device. As we discuss next, one possible form of the device code

					in a fat binary is an intermediate format that defers the final creation of

					device instructions until runtime.

					Compilation Model

					The single-source nature of SYCL and DPC++ allows compilations to

					act and feel like regular C++ compilations. There is no need for us to

					invoke additional passes for devices or deal with bundling device and

					host code. That is all handled automatically for us by the compiler. Of

					course, understanding the details of what is happening can be important

					for several reasons. This is useful knowledge if we want to target specific

					architectures more effectively, and it is important to understand if we need

					to debug a failure happening in the compilation process.

					We will review the compilation model so that we are educated for when

					that knowledge is needed. Since the compilation model supports code that

					executes on both a host and potentially several devices simultaneously, the

					commands issued by the compiler, linker, and other supporting tools are

					more complicated than the C++ compilations we are used to (targeting only

					one architecture). Welcome to the heterogeneous world!

					300

					www. dbooks . or g

					[bookmark: 321_0]
					[bookmark: 321_1]
					[bookmark: 321_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 13 praCtiCal tips

					This heterogeneous complexity is intentionally hidden from us by the

					DPC++ compiler and “just works.”

					The DPC++ compiler can generate target-specific executable code

					similar to traditional C++ compilers (ahead-of-time (AOT) compilation,

					sometimes referred to as offline kernel compilation), or it can generate an

					intermediate representation that can be just-in-time (JIT) compiled to a

					specific target at runtime.

					The compiler can only compile ahead of time if the device target

					is known ahead of time (at the time when we compile our program).

					Deferring for just-in-time compilation gives more flexibility, but requires

					the compiler and the runtime to perform additional work while our

					application is running.

					DpC++ compilation can be “ahead-of-time” or “just-in-time.”

					By default, when we compile our code for most devices, the output

					for device code is stored in an intermediate form. At runtime, the device

					handler on the system will just-in-time compile the intermediate form into

					code to run on the device(s) to match what is available on the system.

					We can ask the compiler to compile ahead-of-time for specific devices

					or classes of devices. This has the advantage of saving runtime, but it has

					the disadvantage of added compile time and fatter binaries! Code that

					is compiled ahead-of-time is not as portable as just-in-time because it

					cannot adjust at runtime. We can include both in our binary to get the

					benefits of both.

					Compiling for a specific device ahead-of-time also helps us to check at

					build time that our program should work on that device. With just-in-time

					compilation, it is possible that a program will fail to compile at runtime

					(which can be caught using the mechanisms in Chapter 5). There are a

					few debugging tips for this in the upcoming “Debugging” section of this

					chapter, and Chapter 5 details how these errors can be caught at runtime

					to avoid requiring that our applications abort.

					301

					[bookmark: 322_0]
				

			

		

		
			
				
					Chapter 13 praCtiCal tips

					Figure 13-2 illustrates the DPC++ compilation process from source

					code to fat binary (executable). Whatever combinations we choose are

					combined into a fat binary. The fat binary is employed by the runtime

					when the application executes (and it is the binary that we execute on

					the host!). At times, we may want to compile device code for a particular

					device in a separate compile. We would want the results of such a

					separate compilation to eventually be combined into our fat binary. This

					can be very useful for FPGA development when full compile (doing a

					full synthesis place-and-route) times can be very long and is in fact a

					requirement for FPGA development to avoid requiring the synthesis tools

					to be installed on a runtime system. Figure 13-3 shows the flow of the

					bundling/unbundling activity supported for such needs. We always have

					the option to compile everything at once, but during development, the

					option to break up compilation can be very useful.

					Every SYCL and DPC++ compiler has a compilation model with the

					same goal, but the exact implementation details will vary. The diagrams

					shown here are for the DPC++ compiler toolchain.

					One DPC++-specific component is shown in Figure 13-2 as the

					integration header generator that will not be mentioned again in this

					book. We can program without ever needing to know what it is or what it

					does. Nevertheless, to satisfy the curious, here is a little information: The

					integration header generator generates a header file providing information

					about SYCL kernels found in the translation unit. This includes how the

					names of SYCL kernel types map to symbolic names and information

					about kernel parameters and their locations within the corresponding

					lambda or functor object created by the compiler to capture them. The

					integration header is the mechanism used to implement the convenient

					style of kernel invocation from host code via C++ lambda/functor objects,

					which frees us from the time-consuming task of setting individual

					arguments, resolving kernels by name, and so on.

					302

					www. dbooks . or g

				

			

		

		
			
				
					
				
			

			
				
					Chapter 13 praCtiCal tips

					Integration

					header generator

					a.h

					Executable

					(fat binary)

					Executable

					(device)

					Compilers:

					Host,

					a.o

					b.o

					Host

					Loader

					a.cpp

					b.cpp

					linker

					Device

					ab.bin

					ab.IR

					Executable

					(host)

					ab.o

					ab.bin

					ab.IR

					JIT

					device IR

					compiler

					Compilers:

					Host,

					Device

					a.IR

					b.IR

					Offload

					wrapper

					Device

					linker

					ab.IR

					AOT

					device IR

					compiler

					b.h

					ab.bin

					Integration

					header generator

					Compile to object

					Link to executable

					Execute

					Figure 13-2. Compilation process: Ahead-of-time and just-in-time

					options

					a.o

					b.o

					a.o

					b.o

					a_fat.o

					a.IR

					Bundler

					Bundler

					Unbundler

					Unbundler

					...

					...

					b_fat.o

					b.IR

					a.IR

					b.IR

					a.IR

					b.IR

					Compile to object

					Link to executable

					Figure 13-3. Compilation process: Offload bundler/unbundler

					Adding SYCL to Existing C++ Programs

					Adding the appropriate exploitation of parallelism to an existing C++

					program is the first step to using SYCL. If a C++ application is already

					exploiting parallel execution, that may be a bonus, or it may be a headache.

					That is because the way we divide the work of an application into parallel

					execution greatly affects what we can do with it. When programmers talk

					303

					[bookmark: 324_0]
					[bookmark: 324_1]
					[bookmark: 324_2]
				

			

		

		
			
				
					Chapter 13 praCtiCal tips

					about refactoring a program, they are referring to rearranging the flow of

					execution and data within a program to get it ready to exploit parallelism.

					This is a complex topic that we will only touch briefly upon. There is no

					one-size-fits-all answer on how to prepare an application for parallelism,

					but there are some tips worth noting.

					When adding parallelism to a C++ application, an easy approach to

					consider is to find an isolated point in the program where the opportunity

					for parallelism is the greatest. We can start our modification there and then

					continue to add parallelism in other areas as needed. A complicating factor

					is that refactoring (e.g., rearranging the program flow and redesigning data

					structures) may improve the opportunity for parallelism.

					Once we find an isolated point in the program where the opportunity

					for parallelism is the greatest, we will need to consider how to use SYCL at

					that point in the program. That is what the rest of the book teaches.

					At a high level, the key steps for introducing parallelism consist of

					1. Safety with concurrency (commonly called

					thread safety in conventional CPU programming):

					Adjusting all shared mutable data (data that can

					change and is shared concurrently) to be used

					concurrently

					2. Introducing concurrency and/or parallelism

					3. Tuning for parallelism (best scaling, optimizing for

					throughput or latency)

					It is important to consider step #1 first. Many applications have already

					been refactored for concurrency, but many have not. With SYCL as the sole

					source of parallelism, we focus on safety for the data being used within

					kernels and possibly shared with the host. If we have other techniques in

					our program (OpenMP, MPI, TBB, etc.) that introduce parallelism, that is

					an additional concern on top of our SYCL programming. It is important to

					note that it is okay to use multiple techniques inside a single program—SYCL

					304

					www. dbooks . or g

				

			

		

		
			
				
					
				
			

			
				
					Chapter 13 praCtiCal tips

					does not need to be the only source of parallelism within a program. This

					book does not cover the advanced topic of mixing with other parallelism

					techniques.

					Debugging

					This section conveys some modest debugging advice, to ease the

					challenges unique to debugging a parallel program, especially one

					targeting a heterogeneous machine.

					We should never forget that we have the option to debug our

					applications while they are running on the host device. This debugging

					tip is described as Method#2 in Chapter 2. Because the architectures of

					devices often include fewer debugging hooks, tools can often probe code

					on a host more precisely. Another advantage of running everything on

					the host is that many errors relating to synchronization will disappear,

					including moving memory back and forth between the host and devices.

					While we eventually need to debug all such errors, this can allow

					incremental debugging so we can resolve some bugs before others.

					Debugging tip running on the host device is a powerful debugging

					tool.

					Parallel programming errors, specifically data races and deadlocks, are

					generally easier for tools to detect and eliminate when running all code

					on the host. Much to our chagrin, we will most often see program failures

					from such parallel programming errors when running on a combination

					of host and devices. When such issues strike, it is very useful to remember

					that pulling back to host-only is a powerful debugging tool. Thankfully,

					SYCL and DPC++ are carefully designed to keep this option available to us

					and easy to access.

					305

					[bookmark: 326_0]
					[bookmark: 326_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 13 praCtiCal tips

					Debugging tip if a program is deadlocking, check that the host

					accessors are being destroyed properly.

					The following DPC++ compiler options are a good idea when we start

					debugging:

					• -g: Put debug information in the output.

					• -ferror-limit=1: Maintain sanity when using C++

					with template libraries such as SYCL/DPC++.

					• -Werror -Wall -Wpedantic: Have the compiler

					enforce good coding to help avoid producing incorrect

					code to debug at runtime.

					We really do not need to get bogged down fixing pedantic warnings

					just to use DPC++, so choosing to not use -Wpedanticis understandable.

					When we leave our code to be compiled just-in-time during runtime,

					there is code we can inspect. This is highly dependent on the layers used by

					our compiler, so looking at the compiler documentation for suggestions is

					a good idea.

					Debugging Kernel Code

					While debugging kernel code, start by running on the host device (as

					advised in Chapter 2). The code for device selectors in Chapter 2 can

					easily be modified to accept runtime options, or compiler-time options, to

					redirect work to the host device when we are debugging.

					When debugging kernel code, SYCL defines a C++-style stream

					that can be used within a kernel (Figure 13-4). DPC++ also offers an

					experimental implementation of a C-style printfthat has useful

					capabilities, with some restrictions. Additional details are in the online

					oneAPI DPC++ language reference.

					306

					www. dbooks . or g

					[bookmark: 327_0]
					[bookmark: 327_1]
				

			

		

		
			
				
					Chapter 13 praCtiCal tips

					Q.submit([&](handler &h){

					stream out(1024, 256, h);

					h.parallel_for(range{8}, [=](id<1> idx){

					out << "Testing my sycl stream (this is work-item ID:" << idx << ")\n";

					});

					});

					Figure 13-4. sycl::stream

					When debugging kernel code, experience encourages that we put

					breakpoints before parallel_foror inside parallel_for,but not actually

					on the parallel_for. A breakpoint placed on a parallel_forcan trigger

					a breakpoint multiple times even after performing the next operation.

					This C++ debugging advice applies to many template expansions like

					those in SYCL, where a breakpoint on the template call will translate into a

					complicated set of breakpoints when it is expanded by the compiler. There

					may be ways that implementations can ease this, but the key point here is

					that we can avoid some confusion on all implementations by not setting

					the breakpoint precisely on the parallel_foritself.

					Debugging Runtime Failures

					When a runtime error occurs while compiling just-in-time, we are

					either dealing with a compiler/runtime bug, or we have accidentally

					programmed nonsense that was not detected until it tripped up the

					runtime and created difficult-to-understand runtime error messages.

					It can be a bit intimidating to dive into these bugs, but even a cursory

					look may allow us to get a better idea of what caused a particular

					issue. It might yield some additional knowledge that will guide us to

					avoid the issue, or it may just help us submit a short bug report to the

					compiler team. Either way, knowing that some tools exist to help can be

					important.

					307

					[bookmark: 328_0]
					[bookmark: 328_1]
					[bookmark: 328_2]
				

			

		

		
			
				
					Chapter 13 praCtiCal tips

					Output from our program that indicates a runtime failure may look like

					this:

					origin>: error: Invalid record (Producer: 'LLVM9.0.0' Reader:

					'LLVM 9.0.0')

					terminate called after throwing an instance of

					'cl::sycl::compile_program_error'

					Seeing this throw noted here lets us know that our host program could

					have been constructed to catch this error. While that may not solve our

					problem, it does mean that runtime compiler failures do not need to abort

					our application. Chapter 5 dives into this topic.

					When we see a runtime failure and have any difficulty debugging

					it quickly, it is worth simply trying a rebuild using ahead-of-time

					compilations. If the device we are targeting has an ahead-of-time

					compilation option, this can be an easy thing to try that may yield easier-

					to-understand diagnostics. If our errors can be seen at compile time

					instead of JIT or runtime, often much more useful information will be

					found in the error messages from the compiler instead of the small amount

					of error information we usually see from a JIT or the runtime. For specific

					options, check the online oneAPI DPC++ documentation for ahead-of-time

					compilation.

					When our SYCL programs are running on top of an OpenCL runtime

					and using the OpenCL backend, we can run our programs with the

					OpenCL Intercept Layer: github.com/intel/opencl-intercept-layer. This

					is a tool that can inspect, log, and modify OpenCL commands that an

					application (or higher-level runtime) is generating. It supports a lot of

					controls, but good ones to set initially are ErrorLogging, BuildLogging,

					and maybe CallLogging(though it generates a lot of output). Useful

					dumps are possible with DumpProgramSPIRV. The OpenCL Intercept Layer

					is a separate utility and is not part of any specific OpenCL implementation,

					so it works with many SYCL compilers.

					308

					www. dbooks . or g

				

			

		

		
			
				
					
				
			

			
				
					Chapter 13 praCtiCal tips

					For suspected compiler issues on Linux systems with Intel GPUs, we

					can dump intermediate compiler output from the Intel Graphics Compiler.

					We do this by setting the environment variable IGC_ShaderDumpEnable

					equal to 1 (for some output) or the environment variable IGC_

					ShaderDumpEnableAllto 1 (for lots and lots of output). The dumped

					output goes in /tmp/IntelIGC. This technique may not apply to all builds

					of the graphics drivers, but it is worth a try to see if it applies to our system.

					Figure 13-5 lists these and a few additional environment variables

					(supported on Windows and Linux) supported by compilers or runtimes to

					aid in advanced debugging. These are DPC++ implementation-dependent

					advanced debug options that exist to inspect and control the compilation

					model. They are not discussed or utilized in this book. The online oneAPI

					DPC++ language reference is a good place to learn more.

					These options are not described more within this book, but they are

					mentioned here to open up this avenue of advanced debugging as needed.

					These options may give us insight into how to work around an issue or bug.

					It is possible that our source code is inadvertently triggering an issue that

					can be resolved by correcting the source code. Otherwise, the use of these

					options is for very advanced debugging of the compiler itself. Therefore,

					they are associated more with compiler developers than with users of

					the compiler. Some advanced users find these options useful; therefore,

					they are mentioned here and never again in this book. To dig deeper, the

					GitHub for DPC++ has a document for all environment variables under

					llvm / sycl / doc / EnvironmentVariables.md.

					Debugging tip When other options are exhausted and we need

					to debug a runtime issue, we look for dump tools that might give us

					hints toward the cause.

					309

				

			

		

		
			
				
					
				
			

			
				
					Chapter 13 praCtiCal tips

					ꢀ����������ꢁ���������

					ꢄ����

					ꢂ��ꢃ�������

					Figure 13-5. DPC++ advanced debug options

					Initializing Data and Accessing Kernel

					Outputs

					In this section, we dive into a topic that causes confusion for new users of

					SYCL and that leads to the most common (in our experience) first bugs

					that we encounter as new SYCL developers.

					Put simply, when we create a buffer from a host memory allocation

					(e.g., array or vector), we can’t access the host allocation directly until the

					buffer has been destroyed. The buffer owns any host allocation passed to

					310

					www. dbooks . or g

					[bookmark: 331_0]
					[bookmark: 331_1]
					[bookmark: 331_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 13 praCtiCal tips

					it at construction time, for the buffer’s entire lifetime. There are rarely used

					mechanisms that do let us access the host allocation while a buffer is still

					alive (e.g., buffer mutex), but those advanced features don’t help with the

					early bugs described here.

					if we construct a buffer from a host memory allocation, we must

					not directly access the host allocation until the buffer has been

					destroyed! While it is alive, the buffer owns the allocation.

					A common bug appears when the host program accesses a host

					allocation while a buffer still owns that allocation. All bets are off once this

					happens, because we don’t know what the buffer is using the allocation for.

					Don’t be surprised if the data is incorrect—the kernels that we’re trying to

					read the output from may not have even started running yet! As described

					in Chapters 3 and 8, SYCL is built around an asynchronous task graph

					mechanism. Before we try to use output data from task graph operations,

					we need to be sure that we have reached synchronization points in the

					code where the graph has executed and made data available to the host.

					Both buffer destruction and creation of host accessors are operations that

					cause this synchronization.

					Figure 13-6 shows a common pattern of code that we often write,

					where we cause a buffer to be destroyed by closing the block scope that

					it was defined within. By causing the buffer to go out of scope and be

					destroyed, we can then safely read kernel results through the original host

					allocation that was passed to the buffer constructor.

					311

					[bookmark: 332_0]
				

			

		

		
			
				
					Chapter 13 praCtiCal tips

					constexpr size_t N = 1024;

					// Set up queue on any available device

					queue q;

					// Create host containers to initialize on the host

					std::vector<int> in_vec(N), out_vec(N);

					// Initialize input and output vectors

					for (int i=0; i < N; i++) in_vec[i] = i;

					std::fill(out_vec.begin(), out_vec.end(), 0);

					// Nuance: Create new scope so that we can easily cause

					// buffers to go out of scope and be destroyed

					{

					// Create buffers using host allocations (vector in this case)

					buffer in_buf{in_vec}, out_buf{out_vec};

					// Submit the kernel to the queue

					q.submit([&](handler& h) {

					accessor in{in_buf, h};

					accessor out{out_buf, h};

					h.parallel_for(range{N}, [=](id<1> idx) {

					out[idx] = in[idx];

					});

					});

					// Close the scope that buffer is alive within! Causes

					// buffer destruction which will wait until the kernels

					// writing to buffers have completed, and will copy the

					// data from written buffers back to host allocations (our

					// std::vectors in this case). After the buffer destructor

					// runs, caused by this closing of scope, then it is safe

					// to access the original in_vec and out_vec again!

					}

					// Check that all outputs match expected value

					// WARNING: The buffer destructor must have run for us to safely

					// use in_vec and out_vec again in our host code. While the buffer

					// is alive it owns those allocations, and they are not safe for us

					// to use! At the least they will contain values that are not up to

					// date. This code is safe and correct because the closing of scope

					// above has caused the buffer to be destroyed before this point

					// where we use the vectors again.

					for (int i=0; i<N; i++)

					std::cout << "out_vec[" << i << "]=" << out_vec[i] << "\n";

					Figure 13-6. Common pattern—buffer creation from a host allocation

					312

					www. dbooks . or g

					[bookmark: 333_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 13 praCtiCal tips

					There are two common reasons to associate a buffer with existing host

					memory like in Figure 13-6:

					1. To simplify initialization of data in a buffer. We can

					just construct the buffer from host memory that we

					(or another part of the application) have already

					initialized.

					2. To reduce the characters typed because closing

					scope with a ‘}’ is slightly more concise (though

					more error prone) than creating a host_accessorto

					the buffer.

					If we use a host allocation to dump or verify the output values from a

					kernel, we need to put the buffer allocation into a block scope (or other

					scopes) so that we can control when it is destroyed. We must then make

					sure that the buffer is destroyed before we access the host allocation to

					obtain the kernel output. Figure 13-6 shows this done correctly, while

					Figure 13-7 shows a common bug where the output is accessed while the

					buffer is still alive.

					advanced users may prefer to use buffer destruction to return result

					data from kernels into a host memory allocation. But for most users,

					and especially new developers, it is recommended to use scoped

					host accessors.

					313

					[bookmark: 334_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 13 praCtiCal tips

					constexpr size_t N = 1024;

					// Set up queue on any available device

					queue q;

					// Create host containers to initialize on the host

					std::vector<int> in_vec(N), out_vec(N);

					// Initialize input and output vectors

					for (int i=0; i < N; i++) in_vec[i] = i;

					std::fill(out_vec.begin(), out_vec.end(), 0);

					// Create buffers using host allocations (vector in this case)

					buffer in_buf{in_vec}, out_buf{out_vec};

					// Submit the kernel to the queue

					q.submit([&](handler& h) {

					accessor in{in_buf, h};

					accessor out{out_buf, h};

					h.parallel_for(range{N}, [=](id<1> idx) {

					out[idx] = in[idx];

					});

					});

					// BUG!!! We're using the host allocation out_vec, but the buffer out_buf

					// is still alive and owns that allocation! We will probably see the

					// initialiation value (zeros) printed out, since the kernel probably

					// hasn't even run yet, and the buffer has no reason to have copied

					// any output back to the host even if the kernel has run.

					for (int i=0; i<N; i++)

					std::cout << "out_vec[" << i << "]=" << out_vec[i] << "\n";

					Figure 13-7. Common bug: Reading data directly from host

					allocation during buffer lifetime

					prefer to use host accessors instead of scoping of buffers, especially

					when getting started.

					To avoid these bugs, we recommend using host accessors instead of

					buffer scoping when getting started with SYCL and DPC++. Host accessors

					provide access to a buffer from the host, and once their constructor has

					314

					www. dbooks . or g

					[bookmark: 335_0]
				

			

		

		
			
				
					Chapter 13 praCtiCal tips

					finished running, we are guaranteed that any previous writes (e.g., from

					kernels submitted before the host_accessorwas created) to the buffer

					have executed and are visible. This book uses a mixture of both styles (i.e.,

					host accessors and host allocations passed to the buffer constructor) to

					provide familiarity with both. Using host accessors tends to be less error

					prone when getting started. Figure 13-8 shows how a host accessor can be

					used to read output from a kernel, without destroying the buffer first.

					constexpr size_t N = 1024;

					// Set up queue on any available device

					queue q;

					// Create host containers to initialize on the host

					std::vector<int> in_vec(N), out_vec(N);

					// Initialize input and output vectors

					for (int i=0; i < N; i++) in_vec[i] = i;

					std::fill(out_vec.begin(), out_vec.end(), 0);

					// Create buffers using host allocations (vector in this case)

					buffer in_buf{in_vec}, out_buf{out_vec};

					// Submit the kernel to the queue

					q.submit([&](handler& h) {

					accessor in{in_buf, h};

					accessor out{out_buf, h};

					h.parallel_for(range{N}, [=](id<1> idx) {

					out[idx] = in[idx];

					});

					});

					// Check that all outputs match expected value

					// Use host accessor! Buffer is still in scope / alive

					host_accessor A{out_buf};

					for (int i=0; i<N; i++) std::cout << "A[" << i << "]=" << A[i] << "\n";

					Figure 13-8. Recommendation: Use a host accessor to read kernel

					results

					315

					[bookmark: 336_0]
					[bookmark: 336_1]
				

			

		

		
			
				
					Chapter 13 praCtiCal tips

					Host accessors can be used whenever a buffer is alive, such as at both

					ends of a typical buffer lifetime—for initialization of the buffer content and

					for reading of results from our kernels. Figure 13-9 shows an example of

					this pattern.

					constexpr size_t N = 1024;

					// Set up queue on any available device

					queue q;

					// Create buffers of size N

					buffer<int> in_buf{N}, out_buf{N};

					// Use host accessors to initialize the data

					{ // CRITICAL: Begin scope for host_accessor lifetime!

					host_accessor in_acc{ in_buf }, out_acc{ out_buf };

					for (int i=0; i < N; i++) {

					in_acc[i] = i;

					out_acc[i] = 0;

					}

					} // CRITICAL: Close scope to make host accessors go out of scope!

					// Submit the kernel to the queue

					q.submit([&](handler& h) {

					accessor in{in_buf, h};

					accessor out{out_buf, h};

					h.parallel_for(range{N}, [=](id<1> idx) {

					out[idx] = in[idx];

					});

					});

					// Check that all outputs match expected value

					// Use host accessor! Buffer is still in scope / alive

					host_accessor A{out_buf};

					for (int i=0; i<N; i++) std::cout << "A[" << i << "]=" << A[i] << "\n";

					Figure 13-9. Recommendation: Use host accessors for buffer

					initialization and reading of results

					316

					www. dbooks . or g

					[bookmark: 337_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 13 praCtiCal tips

					One final detail to mention is that host accessors sometime cause an

					opposite bug in applications, because they also have a lifetime. While a

					host_accessorto a buffer is alive, the runtime will not allow that buffer to

					be used by any devices! The runtime does not analyze our host programs

					to determine when they might access a host accessor, so the only way for

					it to know that the host program has finished accessing a buffer is for the

					host_accessordestructor to run. As shown in Figure 13-10, this can cause

					applications to appear to hang if our host program is waiting for some

					kernels to run (e.g., queue::wait()or acquiring another host accessor)

					and if the DPC++ runtime is waiting for our earlier host accessor(s) to be

					destroyed before it can run kernels that use a buffer.

					When using host accessors, be sure that they are destroyed when

					no longer needed to unlock use of the buffer by kernels or other host

					accessors.

					317

				

			

		

		
			
				
					Chapter 13 praCtiCal tips

					constexpr size_t N = 1024;

					// Set up queue on any available device

					queue q;

					// Create buffers using host allocations (vector in this case)

					buffer<int> in_buf{N}, out_buf{N};

					// Use host accessors to initialize the data

					host_accessor in_acc{ in_buf }, out_acc{ out_buf };

					for (int i=0; i < N; i++) {

					in_acc[i] = i;

					out_acc[i] = 0;

					}

					// BUG: Host accessors in_acc and out_acc are still alive!

					// Later q.submits will never start on a device, because the

					// runtime doesn't know that we've finished accessing the

					// buffers via the host accessors. The device kernels

					// can't launch until the host finishes updating the buffers,

					// since the host gained access first (before the queue submissions).

					// This program will appear to hang! Use a debugger in that case.

					// Submit the kernel to the queue

					q.submit([&](handler& h) {

					accessor in{in_buf, h};

					accessor out{out_buf, h};

					h.parallel_for(range{N}, [=](id<1> idx) {

					out[idx] = in[idx];

					});

					});

					std::cout <<

					"This program will deadlock here!!! Our host_accessors used\n"

					" for data initialization are still in scope, so the runtime won't\n"

					" allow our kernel to start executing on the device (the host could\n"

					" still be initializing the data that is used by the kernel). "

					" The next line\n of code is acquiring a host accessor for"

					" the output, which will wait for\n the kernel to run first. "

					" Since in_acc and out_acc have not been\n"

					" destructed, the kernel is not safe for the runtime to run, "

					" and we deadlock.\n";

					// Check that all outputs match expected value

					// Use host accessor! Buffer is still in scope / alive

					host_accessor A{out_buf};

					for (int i=0; i<N; i++) std::cout << "A[" << i << "]=" << A[i] << "\n";

					Figure 13-10. Bug (hang!) from improper use of host_accessors

					318

					www. dbooks . or g

					[bookmark: 339_0]
				

			

		

		
			
				
					Chapter 13 praCtiCal tips

					Multiple Translation Units

					When we want to call functions inside a kernel that are defined in a

					different translational unit, those functions need to be labeled with SYCL_

					EXTERNAL. Without this attribute, the compiler will only compile a function

					for use outside of device code (making it illegal to call that external

					function from within device code).

					There are a few restrictions on SYCL_EXTERNALfunctions that do not

					apply if we define the function within the same translation unit:

					• SYCL_EXTERNALcan only be used on functions.

					• SYCL_EXTERNALfunctions cannot use raw pointers as

					parameter or return types. Explicit pointer classes must

					be used instead.

					• SYCL_EXTERNALfunctions cannot call a parallel_for_

					work_itemmethod.

					• SYCL_EXTERNALfunctions cannot be called from within

					a parallel_for_work_groupscope.

					If we try to compile a kernel that is calling a function that is not inside

					the same translation unit and is not declared with SYCL_EXTERNAL, then we

					can expect a compile error similar to

					error: SYCL kernel cannot call an undefined function

					without SYCL_EXTERNAL attribute

					If the function itself is compiled without a SYCL_EXTERNALattribute, we

					can expect to see either a link or runtime failure such as

					terminate called after throwing an instance of

					'cl::sycl::compile_program_error'

					...error: undefined reference to ...

					319

					[bookmark: 340_0]
					[bookmark: 340_1]
				

			

		

		
			
				
					Chapter 13 praCtiCal tips

					DPC++ supports SYCL_EXTERNAL.SYCL does not require compilers to

					support SYCL_EXTERNAL; it is an optional feature in general.

					Performance Implications of Multiple Translation

					Units

					An implication of the compilation model (see earlier in this chapter) is

					that if we scatter our device code into multiple translation units, that may

					trigger more invocations of just-in-time compilation than if our device

					code is co-located. This is highly implementation dependent and is subject

					to changes over time as implementations mature.

					Such effects on performance are minor enough to ignore through

					most of our development work, but when we get to fine-tuning to

					maximize code performance, there are two things we can consider

					to mitigate these effects: (1) group device code together in the same

					translation unit, and (2) use ahead-of-time compilation to avoid

					just-in-time compilation effects entirely. Since both of these require

					some effort on our part, we only do this when we have finished our

					development and are trying to squeeze every ounce of performance

					out of our application. When we do resort to this detailed tuning, it

					is worth testing changes to observe their effect on the exact SYCL

					implementation that we are using.

					When Anonymous Lambdas Need Names

					SYCL provides for assigning names defined as lambdas in case tools need

					it and for debugging purposes (e.g., to enable displays in terms of user-

					defined names). Throughout most of this book, anonymous lambdas have

					been used for kernels because names are not needed when using DPC++

					(except for passing of compile options as described with lambda naming

					320

					www. dbooks . or g

					[bookmark: 341_0]
					[bookmark: 341_1]
					[bookmark: 341_2]
				

			

		

		
			
				
					Chapter 13 praCtiCal tips

					discussion in Chapter 10). They are also made optional as of the SYCL 2020

					provisional.

					When we have an advanced need to mix SYCL tools from multiple

					vendors on a codebase, the tooling may require that we name lambdas.

					This is done by adding a <class uniquename>to the SYCL action construct

					in which the lambda is used (e.g., parallel_for). This naming allows

					tools from multiple vendors to interact in a defined way within a single

					compilation and can also help by displaying kernel names that we define

					within debug tools and layers.

					Migrating from CUDA to SYCL

					Migrating CUDA code to SYCL or DPC++ is not covered in detail in this

					book. There are tools and resources available that explore doing this.

					Migrating CUDA code is relatively straightforward since it is a kernel-based

					approach to parallelism. Once written in SYCL or DPC++, the new program

					is enhanced by its ability to target more devices than supported by CUDA

					alone. The newly enhanced program can still be targeted to NVIDIA GPUs

					using SYCL compilers with NVIDIA GPU support.

					Migrating to SYCL opens the door to the diversity of devices supported

					by SYCL, which extends far beyond just GPUs.

					When using the DPC++ Compatibility Tool, the --report-type=value

					option provides very useful statistics about the migrated code. One of the

					reviewers of this book called it a “beautiful flag provided by Intel dpct.”

					The --in-rootoption can prove very useful when migrating CUDA code

					depending on source code organization of a project.

					321

					[bookmark: 342_0]
					[bookmark: 342_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 13 praCtiCal tips

					To learn more about CUDA migration, two resources are a good place

					to start:

					•

					Intel’s DPC++ Compatibility Tool transforms

					CUDA applications into DPC++ code (tinyurl.com/

					CUDAtoDPCpp).

					•

					Codeplay tutorial “Migrating from CUDA to SYCL”

					(tinyurl.com/codeplayCUDAtoSYCL).

					Summary

					Popular culture today often refers to tips as life hacks. Unfortunately,

					programming culture often assigns a negative connotation to hack, so the

					authors refrained from naming this chapter “SYCL Hacks.” Undoubtedly, this

					chapter has just touched the surface of what practical tips can be given for

					using SYCL and DPC++. More tips can be shared by all of us on the online

					forum as we learn together how to make the most out of SYCL with DPC++.

					Open Access This chapter is licensed under the terms

					of the Creative Commons Attribution 4.0 International

					License (http://creativecommons.org/licenses/by/4.0/), which permits

					use, sharing, adaptation, distribution and reproduction in any medium or

					format, as long as you give appropriate credit to the original author(s) and

					the source, provide a link to the Creative Commons license and indicate if

					changes were made.

					The images or other third party material in this chapter are included

					in the chapter’s Creative Commons license, unless indicated otherwise

					in a credit line to the material. If material is not included in the chapter’s

					Creative Commons license and your intended use is not permitted by

					statutory regulation or exceeds the permitted use, you will need to obtain

					permission directly from the copyright holder.

					322

					www. dbooks . or g

					[bookmark: 343_0]
					[bookmark: 343_1]
				

			

		

		
			
				
					
				
			

			
				
					CHAPTER 14

					Common Parallel

					Patterns

					When we are at our best as programmers, we recognize patterns in our

					work and apply techniques that are time proven to be the best solution.

					Parallel programming is no different, and it would be a serious mistake not

					to study the patterns that have proven to be useful in this space. Consider

					the MapReduce frameworks adopted for Big Data applications; their

					success stems largely from being based on two simple yet effective parallel

					patterns—map and reduce.

					There are a number of common patterns in parallel programming

					that crop up time and again, independent of the programming language

					that we’re using. These patterns are versatile and can be employed at

					any level of parallelism (e.g., sub-groups, work-groups, full devices) and

					© Intel Corporation 2021

					J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-5574-2_14

					323

					[bookmark: 344_0]
					[bookmark: 344_1]
				

			

		

		
			
				
					Chapter 14 Common parallel patterns

					on any device (e.g., CPUs, GPUs, FPGAs). However, certain properties

					of the patterns (such as their scalability) may affect their suitability for

					different devices. In some cases, adapting an application to a new device

					may simply require choosing appropriate parameters or fine-tuning

					an implementation of a pattern; in others, we may be able to improve

					performance by selecting a different pattern entirely.

					Developing an understanding of how, when, and where to use these

					common parallel patterns is a key part of improving our proficiency in

					DPC++ (and parallel programming in general). For those with existing

					parallel programming experience, seeing how these patterns are expressed

					in DPC++ can be a quick way to spin up and gain familiarity with the

					capabilities of the language.

					This chapter aims to provide answers to the following questions:

					•

					•

					Which patterns are the most important to understand?

					How do the patterns relate to the capabilities of

					different devices?

					•

					•

					Which patterns are already provided as DPC++

					functions and libraries?

					How would the patterns be implemented using direct

					programming?

					Understanding the Patterns

					The patterns discussed here are a subset of the parallel patterns described

					in the book Structured Parallel Programming by McCool et al. We do not

					cover the patterns related to types of parallelism (e.g., fork-join, branch-

					and-bound) but focus on the algorithmic patterns most useful for writing

					data-parallel kernels.

					324

					www. dbooks . or g

					[bookmark: 345_0]
					[bookmark: 345_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 14 Common parallel patterns

					We wholeheartedly believe that understanding this subset of parallel

					patterns is critical to becoming an effective DPC++ programmer. The table

					in Figure 14-1 presents a high-level overview of the different patterns,

					including their primary use cases, their key attributes, and how their

					attributes impact their affinity for different hardware devices.

					Figure 14-1. Parallel patterns and their affinity for different device

					types

					Map

					The map pattern is the simplest parallel pattern of all and will

					be immediately familiar to readers with experience of functional

					programming languages. As shown in Figure 14-2, each input element of

					a range is independently mapped to an output by applying some function.

					Many data-parallel operations can be expressed as instances of the map

					pattern (e.g., vector addition).

					325

					[bookmark: 346_0]
					[bookmark: 346_1]
					[bookmark: 346_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 14 Common parallel patterns

					Figure 14-2. Map pattern

					Since every application of the function is completely independent,

					expressions of map are often very simple, relying on the compiler and/or

					runtime to do most of the hard work. We should expect kernels written to the

					map pattern to be suitable for any device and for the performance of those

					kernels to scale very well with the amount of available hardware parallelism.

					However, we should think carefully before deciding to rewrite entire

					applications as a series of map kernels! Such a development approach is

					highly productive and guarantees that an application will be portable to a wide

					variety of device types but encourages us to ignore optimizations that may

					significantly improve performance (e.g., improving data reuse, fusing kernels).

					Stencil

					The stencil pattern is closely related to the map pattern. As shown in

					Figure 14-3, a function is applied to an input and a set of neighboring

					inputs described by a stencil to produce a single output. Stencil patterns

					appear frequently in many domains, including scientific/engineering

					applications (e.g., finite difference codes) and computer vision/machine

					learning applications (e.g., image convolutions).

					326

					www. dbooks . or g

					[bookmark: 347_0]
					[bookmark: 347_1]
					[bookmark: 347_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 14 Common parallel patterns

					Figure 14-3. Stencil pattern

					When the stencil pattern is executed out-of-place (i.e., writing the

					outputs to a separate storage location), the function can be applied to

					every input independently. Scheduling stencils in the real world is often

					more complicated than this: computing neighboring outputs requires the

					same data, and loading that data from memory multiple times will degrade

					performance; and we may wish to apply the stencil in-place (i.e., overwriting

					the original input values) in order to decrease an application’s memory

					footprint.

					The suitability of a stencil kernel for different devices is therefore

					highly dependent on properties of the stencil and the input problem. As a

					rule of thumb:

					327

					[bookmark: 348_0]
				

			

		

		
			
				
					Chapter 14 Common parallel patterns

					•

					•

					•

					Small stencils can benefit from the scratchpad storage

					of GPUs.

					Large stencils can benefit from the (comparatively)

					large caches of CPUs.

					Small stencils operating on small inputs can achieve

					significant performance gains via implementation as

					systolic arrays on FPGAs.

					Since stencils are easy to describe but complex to implement

					efficiently, stencils are one of the most active areas of domain-specific

					language (DSL) development. There are already several embedded DSLs

					leveraging the template meta-programming capabilities of C++ to generate

					high-performance stencil kernels at compile time, and we hope that it is

					only a matter of time before these frameworks are ported to DPC++.

					Reduction

					A reduction is a common parallel pattern which combines partial results

					from each instance of a kernel invocation using an operator that is

					typically associative and commutative (e.g., addition). The most ubiquitous

					examples of reductions are computing a sum (e.g., while computing a

					dot product) or computing the minimum/maximum value (e.g., using

					maximum velocity to set time-step size).

					328

					www. dbooks . or g

					[bookmark: 349_0]
					[bookmark: 349_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 14 Common parallel patterns

					Figure 14-4. Reduction pattern

					Figure 14-4 shows the reduction pattern implemented by way of a

					tree reduction, which is a popular implementation requiring log2(N)

					combination operations for a range of N input elements. Although tree

					reductions are common, other implementations are possible—in general,

					we should not assume that a reduction combines values in a specific order.

					Kernels are rarely embarrassingly parallel in real life, and even

					when they are, they are often paired with reductions (as in MapReduce

					frameworks) to summarize their results. This makes reductions one of the

					most important parallel patterns to understand and one that we must be

					able to execute efficiently on any device.

					Tuning a reduction for different devices is a delicate balancing act

					between the time spent computing partial results and the time spent

					combining them; using too little parallelism increases computation time,

					whereas using too much parallelism increases combination time.

					329

					[bookmark: 350_0]
				

			

		

		
			
				
					Chapter 14 Common parallel patterns

					It may be tempting to improve overall system utilization by using

					different devices to perform the computation and combination steps,

					but such tuning efforts must pay careful attention to the cost of moving

					data between devices. In practice, we find that performing reductions

					directly on data as it is produced and on the same device is often the best

					approach. Using multiple devices to improve the performance of reduction

					patterns therefore relies not on task parallelism but on another level of data

					parallelism (i.e., each device performs a reduction on part of the input data).

					Scan

					The scan pattern computes a generalized prefix sum using a binary

					associative operator, and each element of the output represents a partial

					result. A scan is said to be inclusive if the partial sum for element i is the

					sum of all elements in the range [0, i] (i.e., the sum including i). A scan

					is said to be exclusive if the partial sum for element i is the sum of all

					elements in the range [0, i]) (i.e., the sum excluding i).

					At first glance, a scan appears to be an inherently serial operation, since

					the value of each output depends on the value of the previous output! While

					it is true that scan has less opportunities for parallelism than other patterns

					(and may therefore be less scalable), Figure 14-5 shows that it is possible to

					implement a parallel scan using multiple sweeps over the same data.

					330

					www. dbooks . or g

					[bookmark: 351_0]
					[bookmark: 351_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 14 Common parallel patterns

					Figure 14-5. Scan pattern

					Because the opportunities for parallelism within a scan operation are

					limited, the best device on which to execute a scan is highly dependent on

					problem size: smaller problems are a better fit for a CPU, since only larger

					problems will contain enough data parallelism to saturate a GPU. Problem

					size is less of a concern for FPGAs and other spatial architectures, since

					scans naturally lend themselves to pipeline parallelism. As in the case

					of a reduction, a good rule of thumb is to execute the scan operation on

					the same device that produced the data—considering where and how

					scan operations fit into an application during optimization will typically

					produce better results than focusing on optimizing the scan operations in

					isolation.

					331

					[bookmark: 352_0]
					[bookmark: 352_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 14 Common parallel patterns

					Pack and Unpack

					The pack and unpack patterns are closely related to scans and are often

					implemented on top of scan functionality. We cover them separately here

					because they enable performant implementations of common operations

					(e.g., appending to a list) that may not have an obvious connection to

					prefix sums.

					Pack

					The pack pattern, shown in Figure 14-6, discards elements of an input

					range based on a Boolean condition, packing the elements that are not

					discarded into contiguous locations of the output range. This Boolean

					condition could be a pre-computed mask or could be computed online by

					applying some function to each input element.

					¡

					¡

					¡

					Figure 14-6. Pack pattern

					Like with scan, there is an inherently serial nature to the pack

					operation. Given an input element to pack/copy, computing its location

					in the output range requires information about how many prior elements

					332

					www. dbooks . or g

					[bookmark: 353_0]
					[bookmark: 353_1]
					[bookmark: 353_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 14 Common parallel patterns

					were also packed/copied into the output. This information is equivalent to

					an exclusive scan over the Boolean condition driving the pack.

					Unpack

					As shown in Figure 14-7 (and as its name suggests), the unpack pattern is

					the opposite of the pack pattern. Contiguous elements of an input range

					are unpacked into non-contiguous elements of an output range, leaving

					other elements untouched. The most obvious use case for this pattern is

					to unpack data that was previously packed, but it can also be used to fill in

					“gaps” in data resulting from some previous computation.

					Figure 14-7. Unpack pattern

					Using Built-In Functions and Libraries

					Many of these patterns can be expressed directly using built-in

					functionality of DPC++ or vendor-provided libraries written in DPC++.

					Leveraging these functions and libraries is the best way to balance

					performance, portability, and productivity in real large-scale software

					engineering projects.

					333

					[bookmark: 354_0]
					[bookmark: 354_1]
					[bookmark: 354_2]
				

			

		

		
			
				
					Chapter 14 Common parallel patterns

					The DPC++ Reduction Library

					Rather than require that each of us maintain our own library of portable

					and highly performant reduction kernels, DPC++ provides a convenient

					abstraction for describing variables with reduction semantics. This

					abstraction simplifies the expression of reduction kernels and makes the

					fact that a reduction is being performed explicit, allowing implementations

					to select between different reduction algorithms for different combinations

					of device, data type, and reduction operation.

					h.parallel_for(

					nd_range<1>{N, B},

					reduction(sum, plus<>()),

					[=](nd_item<1> it, auto& sum) {

					int i = it.get_global_id(0);

					sum += data[i];

					});

					Figure 14-8. Reduction expressed as an ND-range data-parallel

					kernel using the reduction library

					The kernel in Figure 14-8 shows an example of using the reduction

					library. Note that the kernel body doesn’t contain any reference to

					reductions—all we must specify is that the kernel contains a reduction

					which combines instances of the sumvariable using the plusfunctor. This

					provides enough information for an implementation to automatically

					generate an optimized reduction sequence.

					At the time of writing, the reduction library only supports kernels with

					a single reduction variable. Future versions of DPC++ are expected to

					support kernels which perform more than one reduction simultaneously,

					by specifying multiple reductions between the nd_rangeand functor

					arguments passed into parallel_forand taking multiple reducers as

					arguments to the kernel functor.

					The result of a reduction is not guaranteed to be written back to

					the original variable until the kernel has completed. Apart from this

					restriction, accessing the result of a reduction behaves identically to

					334

					www. dbooks . or g

					[bookmark: 355_0]
					[bookmark: 355_1]
					[bookmark: 355_2]
				

			

		

		
			
				
					Chapter 14 Common parallel patterns

					accessing any other variable in SYCL: accessing a reduction result stored

					in a buffer requires the creation of an appropriate device or host accessor,

					and accessing a reduction result stored in a USM allocation may require

					explicit synchronization and/or memory movement.

					One important way in which the DPC++ reduction library differs

					from reduction abstractions found in other languages is that it restricts

					our access to the reduction variable during kernel execution—we cannot

					inspect the intermediate values of a reduction variable, and we are

					forbidden from updating the reduction variable using anything other than

					the specified combination function. These restrictions prevent us from

					making mistakes that would be hard to debug (e.g., adding to a reduction

					variable while trying to compute the maximum) and ensure that reductions

					can be implemented efficiently on a wide variety of different devices.

					The reduction Class

					The reductionclass is the interface we use to describe the reductions

					present in a kernel. The only way to construct a reduction object is to use

					one of the functions shown in Figure 14-9.

					template <typename T, typename BinaryOperation>

					unspecified reduction(T* variable, BinaryOperation combiner);

					template <typename T, typename BinaryOperation>

					unspecified reduction(T* variable,Tidentity,BinaryOperation combiner);

					Figure 14-9. Function prototypes of the reduction function

					The first version of the function allows us to specify the reduction

					variable and the operator used to combine the contributions from each

					work-item. The second version allows us to provide an optional identity

					value associated with the reduction operator—this is an optimization for

					user-defined reductions, which we will revisit later.

					335

					[bookmark: 356_0]
				

			

		

		
			
				
					Chapter 14 Common parallel patterns

					Note that the return type of the reductionfunction is unspecified,

					and the reductionclass itself is completely implementation-defined.

					Although this may appear slightly unusual for a C++ class, it permits an

					implementation to use different classes (or a single class with any number

					of template arguments) to represent different reduction algorithms. Future

					versions of DPC++ may decide to revisit this design in order to enable us

					to explicitly request specific reduction algorithms in specific execution

					contexts.

					The reducer Class

					An instance of the reducerclass encapsulates a reduction variable,

					exposing a limited interface ensuring that we cannot update the reduction

					variable in any way that an implementation could consider to be unsafe.

					A simplified definition of the reducerclass is shown in Figure 14-10.

					Like the reductionclass, the precise definition of the reducerclass

					is implementation-defined—a reducer's type will depend on how the

					reduction is being performed, and it is important to know this at compile

					time in order to maximize performance. However, the functions and

					operators that allow us to update the reduction variable are well-defined

					and are guaranteed to be supported by any DPC++ implementation.

					template <typename T,

					typename BinaryOperation,

					/* implementation-defined */>

					class reducer {

					// Combine partial result with reducer's value

					void combine(const T& partial);

					};

					// Other operators are available for standard binary operations

					template <typename T>

					auto& operator +=(reducer<T,plus::<T>>&, const T&);

					Figure 14-10. Simplified definition of the reducer class

					336

					www. dbooks . or g

					[bookmark: 357_0]
				

			

		

		
			
				
					Chapter 14 Common parallel patterns

					Specifically, every reducer provides a combine()function which

					combines the partial result (from a single work-item) with the value

					of the reduction variable. How this combine function behaves is

					implementation-defined but is not something that we need to worry

					about when writing a kernel. A reducer is also required to make other

					operators available depending on the reduction operator; for example, the

					+=operator is defined for plusreductions. These additional operators are

					provided only as a programmer convenience and to improve readability;

					where they are available, these operators have identical behavior to calling

					combine()directly.

					User-Defined Reductions

					Several common reduction algorithms (e.g., a tree reduction) do not

					see each work-item directly update a single shared variable, but instead

					accumulate some partial result in a private variable that will be combined

					at some point in the future. Such private variables introduce a problem:

					how should the implementation initialize them? Initializing variables to

					the first contribution from each work-item has potential performance

					ramifications, since additional logic is required to detect and handle

					uninitialized variables. Initializing variables to the identity of the reduction

					operator instead avoids the performance penalty but is only possible when

					the identity is known.

					DPC++ implementations can only automatically determine the correct

					identity value to use when a reduction is operating on simple arithmetic

					types and the reduction operator is a standard functor (e.g., plus). For

					user-defined reductions (i.e., those operating on user-defined types and/or

					using user-defined functors), we may be able to improve performance by

					specifying the identity value directly.

					337

				

			

		

		
			
				
					Chapter 14 Common parallel patterns

					template <typename T, typename I>

					struct pair {

					bool operator<(const pair& o) const {

					return val <= o.val || (val == o.val && idx <= o.idx);

					}

					T val;

					I idx;

					};

					template <typename T, typename I>

					using minloc = minimum<pair<T, I>>;

					constexpr size_t N = 16;

					constexpr size_t L = 4;

					queue Q;

					float* data = malloc_shared<float>(N, Q);

					pair<float, int>* res = malloc_shared<pair<float, int>>(1, Q);

					std::generate(data, data + N, std::mt19937{});

					pair<float, int> identity = {

					std::numeric_limits<float>::max(), std::numeric_limits<int>::min()

					};

					*res = identity;

					auto red = reduction(res, identity, minloc<float, int>());

					Q.submit([&](handler& h) {

					h.parallel_for(nd_range<1>{N, L}, red, [=](nd_item<1> item, auto& res) {

					int i = item.get_global_id(0);

					pair<float, int> partial = {data[i], i};

					res.combine(partial);

					});

					}).wait();

					std::cout << "minimum value = " << res->val << " at " << res->idx << "\n";

					Figure 14-11. Using a user-defined reduction to find the location of

					the minimum value with an ND-range kernel

					338

					www. dbooks . or g

					[bookmark: 359_0]
				

			

		

		
			
				
					Chapter 14 Common parallel patterns

					Support for user-defined reductions is limited to trivially copyable

					types and combination functions with no side effects, but this is enough

					to enable many real-life use cases. For example, the code in Figure 14-11

					demonstrates the usage of a user-defined reduction to compute both the

					minimum element in a vector and its location.

					oneAPI DPC++ Library

					The C++ Standard Template Library (STL) contains several algorithms

					which correspond to the parallel patterns discussed in this chapter. The

					algorithms in the STL typically apply to sequences specified by pairs of

					iterators and—starting with C++17—support an execution policy argument

					denoting whether they should be executed sequentially or in parallel.

					The oneAPI DPC++ Library (oneDPL) leverages this execution

					policy argument to provide a high-productivity approach to parallel

					programming that leverages kernels written in DPC++ under the hood.

					If an application can be expressed solely using functionality of the STL

					algorithms, oneDPL makes it possible to make use of the accelerators in

					our systems without writing a single line of DPC++ kernel code!

					The table in Figure 14-12 shows how the algorithms available in

					the STL relate to the parallel patterns described in this chapter and to

					legacy serial algorithms (available before C++17) where appropriate. A

					more detailed explanation of how to use these algorithms in a DPC++

					application can be found in Chapter 18.

					339

					[bookmark: 360_0]
					[bookmark: 360_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 14 Common parallel patterns

					transform

					transform

					accumulate

					transform

					transform

					reduce

					transform_reduce

					partial_sum

					inclusive_scan

					exclusive_scan

					transform_inclusive_scan

					transform_exclusive_scan

					copy_if

					Figure 14-12. Relating parallel patterns with the C++17 algorithm

					library

					Group Functions

					Support for parallel patterns in DPC++ device code is provided by a

					separate library of group functions. These group functions exploit the

					parallelism of a specific group of work-items (i.e., a work-group or a sub-

					group) to implement common parallel algorithms at limited scope and can

					be used as building blocks to construct other more complex algorithms.

					Like oneDPL, the syntax of the group functions in DPC++ is based on

					that of the algorithm library in C++. The first argument to each function

					accepts a groupor sub_groupobject in place of an execution policy, and any

					restrictions from the C++ algorithms apply. Group functions are performed

					collaboratively by all the work-items in the specified group and so must

					be treated similarly to a group barrier—all work-items in the group must

					encounter the same algorithm in converged control flow (i.e., all work-items

					in the group must similarly encounter or not encounter the algorithm call),

					and all work-items must provide the same function arguments in order to

					ensure that they agree on the operation being performed.

					340

					www. dbooks . or g

					[bookmark: 361_0]
					[bookmark: 361_1]
					[bookmark: 361_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 14 Common parallel patterns

					At the time of writing, the reduce, exclusive_scan, and inclusive_

					scanfunctions are limited to supporting only primitive data types and the

					most common reduction operators (e.g., plus, minimum, and maximum). This

					is enough for many use cases, but future versions of DPC++ are expected to

					extend collective support to user-defined types and operators.

					Direct Programming

					Although we recommend leveraging libraries wherever possible, we can

					learn a lot by looking at how each pattern could be implemented using

					“native” DPC++ kernels.

					The kernels in the remainder of this chapter should not be expected

					to reach the same level of performance as highly tuned libraries but

					are useful in developing a greater understanding of the capabilities of

					DPC++—and may even serve as a starting point for prototyping new library

					functionality.

					USE VENDOR-PROVIDED LIBRARIES!

					When a vendor provides a library implementation of a function, it is almost

					always beneficial to use it rather than re-implementing the function as a

					kernel!

					Map

					Owing to its simplicity, the map pattern can be implemented directly as

					a basic parallel kernel. The code shown in Figure 14-13 shows such an

					implementation, using the map pattern to compute the square root of each

					input element in a range.

					341

					[bookmark: 362_0]
					[bookmark: 362_1]
					[bookmark: 362_2]
				

			

		

		
			
				
					Chapter 14 Common parallel patterns

					Q.parallel_for(N, [=](id<1> i) {

					output[i] = sqrt(input[i]);

					}).wait();

					Figure 14-13. Implementing the map pattern in a data-parallel

					kernel

					Stencil

					Implementing a stencil directly as a multidimensional basic data-parallel

					kernel with multidimensional buffers, as shown in Figure 14-14, is

					straightforward and easy to understand.

					id<2> offset(1, 1);

					h.parallel_for(stencil_range, offset, [=](id<2> idx) {

					int i = idx[0];

					int j = idx[1];

					float self = input[i][j];

					float north = input[i - 1][j];

					float east = input[i][j + 1];

					float south = input[i + 1][j];

					float west = input[i][j - 1];

					output[i][j] = (self + north + east + south + west) / 5.0f;

					});

					Figure 14-14. Implementing the stencil pattern in a data-parallel

					kernel

					However, this expression of the stencil pattern is very naïve and should

					not be expected to perform very well. As mentioned earlier in the chapter,

					it is well-known that leveraging locality (via spatial or temporal blocking) is

					required to avoid repeated reads of the same data from memory. A simple

					example of spatial blocking, using work-group local memory, is shown in

					Figure 14-15.

					342

					www. dbooks . or g

					[bookmark: 363_0]
					[bookmark: 363_1]
					[bookmark: 363_2]
					[bookmark: 363_3]
				

			

		

		
			
				
					Chapter 14 Common parallel patterns

					range<2> local_range(B, B);

					// Includes boundary cells

					range<2> tile_size = local_range + range<2>(2, 2);

					auto tile = local_accessor<float, 2>(tile_size, h);

					// Compute the average of each cell and its immediate neighbors

					id<2> offset(1, 1);

					h.parallel_for(

					nd_range<2>(stencil_range, local_range, offset), [=](nd_item<2>it) {

					// Load this tile into work-group local memory

					id<2> lid = it.get_local_id();

					range<2> lrange = it.get_local_range();

					for (int ti = lid[0]; ti < B + 2; ti += lrange[0]) {

					int gi = ti + B * it.get_group(0);

					for (int tj = lid[1]; tj < B + 2; tj += lrange[1]) {

					int gj = tj + B * it.get_group(1);

					tile[ti][tj] = input[gi][gj];

					}

					}

					it.barrier(access::fence_space::local_space);

					// Compute the stencil using values from local memory

					int gi = it.get_global_id(0);

					int gj = it.get_global_id(1);

					int ti = it.get_local_id(0) + 1;

					int tj = it.get_local_id(1) + 1;

					float self = tile[ti][tj];

					float north = tile[ti - 1][tj];

					float east = tile[ti][tj + 1];

					float south = tile[ti + 1][tj];

					float west = tile[ti][tj - 1];

					output[gi][gj] = (self + north + east + south + west) / 5.0f;

					});

					Figure 14-15. Implementing the stencil pattern in an ND-range

					kernel, using work-group local memory

					343

					[bookmark: 364_0]
				

			

		

		
			
				
					Chapter 14 Common parallel patterns

					Selecting the best optimizations for a given stencil requires compile-

					time introspection of block size, the neighborhood, and the stencil

					function itself, requiring a much more sophisticated approach than

					discussed here.

					Reduction

					It is possible to implement reduction kernels in DPC++ by leveraging

					language features that provide synchronization and communication

					capabilities between work-items (e.g., atomic operations, work-group and

					sub-group functions, sub-group shuffles). The kernels in Figures 14-16 and

					14-17 show two possible reduction implementations: a naïve reduction

					using a basic parallel_forand an atomic operation for every work-item;

					and a slightly smarter reduction that exploits locality using an ND-range

					parallel_forand a work-group reducefunction, respectively. We will

					revisit these atomic operations in more detail in Chapter 19.

					Q.parallel_for(N, [=](id<1> i) {

					atomic_ref<

					int,

					memory_order::relaxed,

					memory_scope::system,

					access::address_space::global_space>(*sum) += data[i];

					}).wait();

					Figure 14-16. Implementing a naïve reduction expressed as a

					data-parallel kernel

					344

					www. dbooks . or g

					[bookmark: 365_0]
					[bookmark: 365_1]
					[bookmark: 365_2]
				

			

		

		
			
				
					Chapter 14 Common parallel patterns

					Q.parallel_for(nd_range<1>{N, B}, [=](nd_item<1> it) {

					int i = it.get_global_id(0);

					int group_sum = reduce(it.get_group(), data[i], plus<>());

					if (it.get_local_id(0) == 0) {

					atomic_ref<

					int,

					memory_order::relaxed,

					memory_scope::system,

					access::address_space::global_space>(*sum) += group_sum;

					}

					}).wait();

					Figure 14-17. Implementing a naïve reduction expressed as an

					ND-range kernel

					There are numerous other ways to write reduction kernels, and

					different devices will likely prefer different implementations, owing to

					differences in hardware support for atomic operations, work-group local

					memory size, global memory size, the availability of fast device-wide

					barriers, or even the availability of dedicated reduction instructions. On

					some architectures, it may even be faster (or necessary!) to perform a tree

					reduction using log2(N) separate kernel calls.

					We strongly recommend that manual implementations of reductions

					be considered only for cases that are not supported by the DPC++

					reduction library or when fine-tuning a kernel for the capabilities of

					a specific device—and even then, only after being 100% sure that the

					reduction library is underperforming!

					Scan

					As we saw earlier in this chapter, implementing a parallel scan requires

					multiple sweeps over the data, with synchronization occurring

					between each sweep. Since DPC++ does not provide a mechanism for

					synchronizing all work-items in an ND-range, a direct implementation

					of a device-wide scan must be implemented using multiple kernels that

					communicate partial results through global memory.

					345

					[bookmark: 366_0]
					[bookmark: 366_1]
					[bookmark: 366_2]
				

			

		

		
			
				
					Chapter 14 Common parallel patterns

					The code, shown in Figures 14-18, 14-19, and 14-20, demonstrates

					an inclusive scan implemented using several kernels. The first kernel

					distributes the input values across work-groups, computing work-group

					local scans in work-group local memory (note that we could have used

					the work-group inclusive_scanfunction instead). The second kernel

					computes a local scan using a single work-group, this time over the final

					value from each block. The third kernel combines these intermediate

					results to finalize the prefix sum. These three kernels correspond to the

					three layers of the diagram in Figure 14-5.

					// Phase 1: Compute local scans over input blocks

					q.submit([&](handler& h) {

					auto local = local_accessor<int32_t, 1>(L, h);

					h.parallel_for(nd_range<1>(N, L), [=](nd_item<1> it) {

					int i = it.get_global_id(0);

					int li = it.get_local_id(0);

					// Copy input to local memory

					local[li] = input[i];

					it.barrier();

					// Perform inclusive scan in local memory

					for (int32_t d = 0; d <= log2((float)L) - 1; ++d) {

					uint32_t stride = (1 << d);

					int32_t update = (li >= stride) ? local[li - stride] : 0;

					it.barrier();

					local[li] += update;

					it.barrier();

					}

					// Write the result for each item to the output buffer

					// Write the last result from this block to the temporary buffer

					output[i] = local[li];

					if (li == it.get_local_range()[0] - 1)

					tmp[it.get_group(0)] = local[li];

					});

					}).wait();

					Figure 14-18. Phase 1 for implementing a global inclusive scan in an

					ND-range kernel: Computing across each work-group

					346

					www. dbooks . or g

					[bookmark: 367_0]
				

			

		

		
			
				
					Chapter 14 Common parallel patterns

					// Phase 2: Compute scan over partial results

					q.submit([&](handler& h) {

					auto local = local_accessor<int32_t, 1>(G, h);

					h.parallel_for(nd_range<1>(G, G), [=](nd_item<1> it) {

					int i = it.get_global_id(0);

					int li = it.get_local_id(0);

					// Copy input to local memory

					local[li] = tmp[i];

					it.barrier();

					// Perform inclusive scan in local memory

					for (int32_t d = 0; d <= log2((float)G) - 1; ++d) {

					uint32_t stride = (1 << d);

					int32_t update = (li >= stride) ? local[li - stride] : 0;

					it.barrier();

					local[li] += update;

					it.barrier();

					}

					// Overwrite result from each work-item in the temporary buffer

					tmp[i] = local[li];

					});

					}).wait();

					Figure 14-19. Phase 2 for implementing a global inclusive scan in an

					ND-range kernel: Scanning across the results of each work-group

					// Phase 3: Update local scans using partial results

					q.parallel_for(nd_range<1>(N, L), [=](nd_item<1> it) {

					int g = it.get_group(0);

					if (g > 0) {

					int i = it.get_global_id(0);

					output[i] += tmp[g - 1];

					}

					}).wait();

					Figure 14-20. Phase 3 (final) for implementing a global inclusive

					scan in an ND-range kernel

					347

					[bookmark: 368_0]
					[bookmark: 368_1]
				

			

		

		
			
				
					Chapter 14 Common parallel patterns

					Figures 14-18 and 14-19 are very similar; the only differences are the

					size of the range and how the input and output values are handled. A

					real-life implementation of this pattern could use a single function taking

					different arguments to implement these two phases, and they are only

					presented as distinct code here for pedagogical reasons.

					Pack and Unpack

					Pack and unpack are also known as gather and scatter operations. These

					operations handle differences in how data is arranged in memory and how

					we wish to present it to the compute resources.

					Pack

					Since pack depends on an exclusive scan, implementing a pack that

					applies to all elements of an ND-range must also take place via global

					memory and over the course of several kernel enqueues. However, there

					is a common use case for pack that does not require the operation to be

					applied over all elements of an ND-range—namely, applying a pack only

					across items in a specific work-group or sub-group.

					The snippet in Figure 14-21 shows how to implement a group pack

					operation on top of an exclusive scan.

					uint32_t index = exclusive_scan(g, (uint32_t) predicate, plus<>());

					if (predicate)

					dst[index] = value;

					Figure 14-21. Implementing a group pack operation on top of an

					exclusive scan

					The code in Figure 14-22 demonstrates how such a pack operation

					could be used in a kernel to build a list of elements which require some

					additional postprocessing (in a future kernel). The example shown is based

					on a real kernel from molecular dynamics simulations: the work-items in

					348

					www. dbooks . or g

					[bookmark: 369_0]
					[bookmark: 369_1]
					[bookmark: 369_2]
				

			

		

		
			
				
					Chapter 14 Common parallel patterns

					the sub-group assigned to particle i cooperate to identify all other particles

					within a fixed distance of i, and only the particles in this “neighbor list” will

					be used to calculate the force acting on each particle.

					range<2> global(N, 8);

					range<2> local(1, 8);

					Q.parallel_for(

					nd_range<2>(global, local),

					[=](nd_item<2> it) [[cl::intel_reqd_sub_group_size(8)]] {

					int i = it.get_global_id(0);

					sub_group sg = it.get_sub_group();

					int sglid = sg.get_local_id()[0];

					int sgrange = sg.get_max_local_range()[0];

					uint32_t k = 0;

					for (int j = sglid; j < N; j += sgrange) {

					// Compute distance between i and neighbor j

					float r = distance(position[i], position[j]);

					// Pack neighbors that require post-processing into a list

					uint32_t pack = (i != j) and (r <= CUTOFF);

					uint32_t offset = exclusive_scan(sg, pack, plus<>());

					if (pack)

					neighbors[i * MAX_K + k + offset] = j;

					// Keep track of how many neighbors have been packed so far

					k += reduce(sg, pack, plus<>());

					}

					num_neighbors[i] = reduce(sg, k, maximum<>());

					}).wait();

					Figure 14-22. Using a sub-group pack operation to build a list of

					elements needing additional postprocessing

					Note that the pack pattern never re-orders elements—the elements

					that are packed into the output array appear in the same order as they did

					in the input. This property of pack is important and enables us to use pack

					functionality to implement other more abstract parallel algorithms (such

					as std::copy_ifand std::stable_partition). However, there are other

					parallel algorithms that can be implemented on top of pack functionality

					where maintaining order is not required (such as std::partition).

					349

					[bookmark: 370_0]
					[bookmark: 370_1]
				

			

		

		
			
				
					Chapter 14 Common parallel patterns

					Unpack

					As with pack, we can implement unpack using scan. Figure 14-23 shows

					how to implement a sub-group unpack operation on top of an exclusive

					scan.

					uint32_t index = exclusive_scan(sg, (uint32_t) predicate, plus<>());

					return (predicate) ? new_value[index] : original_value;

					Figure 14-23. Implementing a sub-group unpack operation on top of

					an exclusive scan

					The code in Figure 14-24 demonstrates how such a sub-group

					unpack operation could be used to improve load balancing in a kernel

					with divergent control flow (in this case, computing the Mandelbrot set).

					Each work-item is assigned a separate pixel to compute and iterates until

					convergence or a maximum number of iterations is reached. An unpack

					operation is then used to replace completed pixels with new pixels.

					// Keep iterating as long as one work-item has work to do

					while (any_of(sg, i < Nx)) {

					uint32_t converged =

					next_iteration(params, i, j, count, cr, ci, zr, zi, mandelbrot);

					if (any_of(sg, converged)) {

					// Replace pixels that have converged using an unpack

					// Pixels that haven't converged are not replaced

					uint32_t index = exclusive_scan(sg, converged, plus<>());

					i = (converged) ? iq + index : i;

					iq += reduce(sg, converged, plus<>());

					// Reset the iterator variables for the new i

					if (converged)

					reset(params, i, j, count, cr, ci, zr, zi);

					}

					}

					Figure 14-24. Using a sub-group unpack operation to improve load

					balancing for kernels with divergent control flow

					350

					www. dbooks . or g

					[bookmark: 371_0]
					[bookmark: 371_1]
					[bookmark: 371_2]
				

			

		

		
			
				
					Chapter 14 Common parallel patterns

					The degree to which an approach like this improves efficiency (and

					decreases execution time) is highly application- and input-dependent,

					since checking for completion and executing the unpack operation both

					introduce some overhead! Successfully using this pattern in realistic

					applications will therefore require some fine-tuning based on the amount

					of divergence present and the computation being performed (e.g.,

					introducing a heuristic to execute the unpack operation only if the number

					of active work-items falls below some threshold).

					Summary

					This chapter has demonstrated how to implement some of the most

					common parallel patterns using DPC++ and SYCL features, including

					built-in functions and libraries.

					The SYCL and DPC++ ecosystems are still developing, and we expect

					to uncover new best practices for these patterns as developers gain more

					experience with the language and from the development of production-

					grade applications and libraries.

					For More Information

					•

					Structured Parallel Programming: Patterns for Efficient

					Computation by Michael McCool, Arch Robison,

					and James Reinders, © 2012, published by Morgan

					Kaufmann, ISBN 978-0-124-15993-8

					•

					•

					Intel oneAPI DPC++ Library Guide,

					https://software.intel.com/en-us/

					oneapi-dpcpp-library-guide

					Algorithms library, C++ Reference, https://

					en.cppreference.com/w/cpp/algorithm

					351

					[bookmark: 372_0]
					[bookmark: 372_1]
					[bookmark: 372_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 14 Common parallel patterns

					Open Access This chapter is licensed under the terms

					of the Creative Commons Attribution 4.0 International

					License (http://creativecommons.org/licenses/by/4.0/), which permits

					use, sharing, adaptation, distribution and reproduction in any medium or

					format, as long as you give appropriate credit to the original author(s) and

					the source, provide a link to the Creative Commons license and indicate if

					changes were made.

					The images or other third party material in this chapter are included

					in the chapter’s Creative Commons license, unless indicated otherwise

					in a credit line to the material. If material is not included in the chapter’s

					Creative Commons license and your intended use is not permitted by

					statutory regulation or exceeds the permitted use, you will need to obtain

					permission directly from the copyright holder.

					352

					www. dbooks . or g

				

			

		

		
			
				
					
				
			

			
				
					CHAPTER 15

					Programming for GPUs

					Over the last few decades, Graphics Processing Units (GPUs) have evolved

					from specialized hardware devices capable of drawing images on a screen

					to general-purpose devices capable of executing complex parallel kernels.

					Nowadays, nearly every computer includes a GPU alongside a traditional

					CPU, and many programs may be accelerated by offloading part of a

					parallel algorithm from the CPU to the GPU.

					In this chapter, we will describe how a typical GPU works, how

					GPU software and hardware execute a SYCL application, and tips and

					techniques to keep in mind when we are writing and optimizing parallel

					kernels for a GPU.

					© Intel Corporation 2021

					J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-5574-2_15

					353

					[bookmark: 374_0]
					[bookmark: 374_1]
				

			

		

		
			
				
					
				
			

			
				
					ChaPTer 15 ProGramminG for GPUs

					Performance Caveats

					As with any processor type, GPUs differ from vendor to vendor or even from

					product generation to product generation; therefore, best practices for one

					device may not be best practices for a different device. The advice in this

					chapter is likely to benefit many GPUs, both now and in the future, but…

					To achieve optimal performance for a particular GPU, always consult

					the GPU vendor’s documentation!

					Links to documentation from many GPU vendors are provided at the

					end of this chapter.

					How GPUs Work

					This section describes how typical GPUs work and how GPUs differ from

					other accelerator types.

					GPU Building Blocks

					Figure 15-1 shows a very simplified GPU consisting of three high-level

					building blocks:

					1. Execution resources: A GPU’s execution resources

					are the processors that perform computational

					work. Different GPU vendors use different names

					for their execution resources, but all modern GPUs

					consist of multiple programmable processors. The

					processors may be heterogeneous and specialized for

					particular tasks, or they may be homogeneous and

					interchangeable. Processors for most modern GPUs

					are homogeneous and interchangeable.

					354

					www. dbooks . or g

					[bookmark: 375_0]
					[bookmark: 375_1]
					[bookmark: 375_2]
					[bookmark: 375_3]
				

			

		

		
			
				
					
				
			

			
				
					ChaPTer 15 ProGramminG for GPUs

					2. Fixed functions: GPU fixed functions are hardware

					units that are less programmable than the execution

					resources and are specialized for a single task.

					When a GPU is used for graphics, many parts of the

					graphics pipeline such as rasterization or raytracing

					are performed using fixed functions to improve

					power efficiency and performance. When a GPU is

					used for data-parallel computation, fixed functions

					may be used for tasks such as workload scheduling,

					texture sampling, and dependence tracking.

					3. Caches and memory: Like other processor types,

					GPUs frequently have caches to store data accessed

					by the execution resources. GPU caches may be

					implicit, in which case they require no action from

					the programmer, or may be explicit scratchpad

					memories, in which case a programmer must

					purposefully move data into a cache before using

					it. Many GPUs also have a large pool of memory to

					provide fast access to data used by the execution

					resources.

					���

					�»¨¦¸·¬²±ꢀ�¨¶²¸µ¦¨¶

					�¬»¨§ꢀ�¸±¦·¬²±¶

					�¤¦«¨¶ꢀ¤±§ꢀ�¨°²µ¼

					Figure 15-1. Typical GPU building blocks—not to scale!

					355

					[bookmark: 376_0]
					[bookmark: 376_1]
				

			

		

		
			
				
					
				
			

			
				
					ChaPTer 15 ProGramminG for GPUs

					Simpler Processors (but More of Them)

					Traditionally, when performing graphics operations, GPUs process large

					batches of data. For example, a typical game frame or rendering workload

					involves thousands of vertices that produce millions of pixels per frame.

					To maintain interactive frame rates, these large batches of data must be

					processed as quickly as possible.

					A typical GPU design tradeoff is to eliminate features from the

					processors forming the execution resources that accelerate single-

					threaded performance and to use these savings to build additional

					processors, as shown in Figure 15-2. For example, GPU processors may

					not include sophisticated out-of-order execution capabilities or branch

					prediction logic used by other types of processors. Due to these tradeoffs,

					a single data element may be processed on a GPU slower than it would on

					another processor, but the larger number of processors enables GPUs to

					process many data elements quickly and efficiently.

					�²°³¯¨»ꢀ�µ²¦¨¶¶²µ

					�¬°³¯¨µꢀ�µ²¦¨¶¶²µꢀ»ꢀꢁ

					�¨·¦«e�¨¦²§¨

					�¨·¦«e�¨¦²§¨

					�¨·¦«e�¨¦²§¨

					�¤±¦¼

					�¨¤·¸µ¨¶

					���

					���

					���

					�¨ª¬¶·¨µ¶

					�¨ª¬¶·¨µ¶

					�¨ª¬¶·¨µ¶

					Figure 15-2. GPU processors are simpler, but there are more of them

					356

					www. dbooks . or g

					[bookmark: 377_0]
					[bookmark: 377_1]
				

			

		

		
			
				
					
				
			

			
				
					ChaPTer 15 ProGramminG for GPUs

					To take advantage of this tradeoff when executing kernels, it is

					important to give the GPU a sufficiently large range of data elements to

					process. To demonstrate the importance of offloading a large range of data,

					consider the matrix multiplication kernel we have been developing and

					modifying throughout this book.

					A REMINDER ABOUT MATRIX MULTIPLICATION

					in this book, matrix multiplication kernels are used to demonstrate how changes

					in a kernel or the way it is dispatched affects performance. although matrix

					multiplication performance are significantly improved using the techniques

					described in this chapter, matrix multiplication is such an important and

					common operation that many hardware (GPU, CPU, fPGa, DsP, etc.) vendors

					have implemented highly tuned versions of many routines including matrix

					multiplication. such vendors invest significant time and effort implementing

					and validating functions for specific devices and in some cases may use

					functionality or techniques that are difficult or impossible to use in standard

					kernels.

					USE VENDOR-PROVIDED LIBRARIES!

					When a vendor provides a library implementation of a function, it is almost

					always beneficial to use it rather than re-implementing the function as a

					kernel! for matrix multiplication, one can look to onemKL as part of intel’s

					oneaPi toolkits for solutions appropriate for DPC++ programmers.

					A matrix multiplication kernel may be trivially executed on a GPU

					by submitting it into a queue as a single task. The body of this matrix

					multiplication kernel looks exactly like a function that executes on the host

					CPU and is shown in Figure 15-3.

					357

				

			

		

		
			
				
					
				
			

			
				
					ChaPTer 15 ProGramminG for GPUs

					h.single_task([=]() {

					for (int m = 0; m < M; m++) {

					for (int n = 0; n < N; n++) {

					T sum = 0;

					for (int k = 0; k < K; k++)

					sum += matrixA[m * K + k] * matrixB[k * N + n];

					matrixC[m * N + n] = sum;

					}

					}

					});

					Figure 15-3. A single task matrix multiplication looks a lot like CPU

					host code

					If we try to execute this kernel on a CPU, it will probably perform

					okay—not great, since it is not expected to utilize any parallel capabilities

					of the CPU, but potentially good enough for small matrix sizes. As shown in

					Figure 15-4, if we try to execute this kernel on a GPU, however, it will likely

					perform very poorly, because the single task will only utilize a single GPU

					processor.

					���

					�»¨¦¸·¬²±ꢀ�¨¶²¸µ¦¨¶

					�¬»¨§ꢀ�¸±¦·¬²±¶

					�¸¶¼ꢁ

					�§¯¨

					�§¯¨

					�§¯¨

					�§¯¨

					�§¯¨

					�§¯¨

					�§¯¨

					�§¯¨

					�§¯¨

					�§¯¨

					�¤¦«¨¶ꢀ¤±§ꢀ�¨°²µ¼

					�§¯¨

					Figure 15-4. A single task kernel on a GPU leaves many execution

					resources idle

					358

					www. dbooks . or g

					[bookmark: 379_0]
					[bookmark: 379_1]
				

			

		

		
			
				
					
				
			

			
				
					ChaPTer 15 ProGramminG for GPUs

					Expressing Parallelism

					To improve the performance of this kernel for both CPUs and GPUs,

					we can instead submit a range of data elements to process in parallel,

					by converting one of the loops to a parallel_for. For the matrix

					multiplication kernel, we can choose to submit a range of data elements

					representing either of the two outermost loops. In Figure 15-5, we’ve

					chosen to process rows of the result matrix in parallel.

					h.parallel_for(range{M}, [=](id<1> idx) {

					int m = idx[0];

					for (int n = 0; n < N; n++) {

					T sum = 0;

					for (int k = 0; k < K; k++)

					sum += matrixA[m * K + k] * matrixB[k * N + n];

					matrixC[m * N + n] = sum;

					}

					});

					Figure 15-5. Somewhat-parallel matrix multiplication

					CHOOSING HOW TO PARALLELIZE

					Choosing which dimension to parallelize is one very important way to tune an

					application for both GPUs and other device types. subsequent sections in this

					chapter will describe some of the reasons why parallelizing in one dimension

					may perform better than parallelizing in a different dimension.

					Even though the somewhat-parallel kernel is very similar to the single

					task kernel, it should run better on a CPU and much better on a GPU. As

					shown in Figure 15-6, the parallel_forenables work-items representing

					rows of the result matrix to be processed on multiple processor resources

					in parallel, so all execution resources stay busy.

					359

					[bookmark: 380_0]
				

			

		

		
			
				
					
				
			

			
				
					ChaPTer 15 ProGramminG for GPUs

					���

					�»¨¦¸·¬²±ꢀ�¨¶²¸µ¦¨¶

					�¬»¨§ꢀ�¸±¦·¬²±¶

					�¸¶¼ꢁ

					¬§ꢀIꢀꢂ

					�¸¶¼ꢁ

					¬§ꢀIꢀꢃ

					�¸¶¼ꢁ

					¬§ꢀIꢀꢄ

					�¸¶¼ꢁ

					¬§ꢀIꢀꢅ

					�¸¶¼ꢁ

					¬§ꢀIꢀꢆ

					�¸¶¼ꢁ

					¬§ꢀIꢀꢇ

					�¸¶¼ꢁ

					¬§ꢀIꢀꢈ

					�¸¶¼ꢁ

					¬§ꢀIꢀꢉ

					�¸¶¼ꢁ

					¬§ꢀIꢀꢊ

					�¸¶¼ꢁ

					¬§ꢀIꢀꢋ

					�¸¶¼ꢁ

					�¸¶¼ꢁ

					¬§ꢀIꢀꢌꢌꢌ

					�¤¦«¨¶ꢀ¤±§ꢀ�¨°²µ¼

					¬§ꢀIꢀꢃꢂ

					Figure 15-6. Somewhat-parallel kernel keeps more processor

					resources busy

					Note that the exact way that the rows are partitioned and assigned to

					different processor resources is not specified, giving an implementation

					flexibility to choose how best to execute the kernel on a device. For

					example, instead of executing individual rows on a processor, an

					implementation may choose to execute consecutive rows on the same

					processor to gain locality benefits.

					Expressing More Parallelism

					We can parallelize the matrix multiplication kernel even more by choosing

					to process both outer loops in parallel. Because parallel_forcan express

					parallel loops over up to three dimensions, this is straightforward, as

					shown in Figure 15-7. In Figure 15-7, note that both the range passed

					to parallel_forand the item representing the index in the parallel

					execution space are now two-dimensional.

					360

					www. dbooks . or g

					[bookmark: 381_0]
				

			

		

		
			
				
					ChaPTer 15 ProGramminG for GPUs

					h.parallel_for(range{M, N}, [=](id<2> idx) {

					int m = idx[0];

					int n = idx[1];

					T sum = 0;

					for (int k = 0; k < K; k++)

					sum += matrixA[m * K + k] * matrixB[k * N + n];

					matrixC[m * N + n] = sum;

					});

					Figure 15-7. Even more parallel matrix multiplication

					Exposing additional parallelism will likely improve the performance

					of the matrix multiplication kernel when run on a GPU. This is likely to be

					true even when the number of matrix rows exceeds the number of GPU

					processors. The next few sections describe possible reasons why this may

					be the case.

					Simplified Control Logic (SIMD Instructions)

					Many GPU processors optimize control logic by leveraging the fact that

					most data elements tend to take the same control flow path through a

					kernel. For example, in the matrix multiplication kernel, each data element

					executes the innermost loop the same number of times since the loop

					bounds are invariant.

					When data elements take the same control flow path through a kernel,

					a processor may reduce the costs of managing an instruction stream by

					sharing control logic among multiple data elements and executing them as

					a group. One way to do this is to implement a Single Instruction, Multiple

					Data or SIMD instruction set, where multiple data elements are processed

					simultaneously by a single instruction.

					361

					[bookmark: 382_0]
					[bookmark: 382_1]
				

			

		

		
			
				
					
				
			

			
				
					ChaPTer 15 ProGramminG for GPUs

					THREADS VS. INSTRUCTION STREAMS

					in many parallel programming contexts and GPU literature, the term “thread”

					is used to mean an “instruction stream.” in these contexts, a “thread” is

					different than a traditional operating system thread and is typically much more

					lightweight. This isn’t always the case, though, and in some cases, a “thread”

					is used to describe something completely different.

					since the term “thread” is overloaded and easily misunderstood, this chapter

					uses the term “instruction stream” instead.

					����ꢀ�µ²¦¨¶¶²µ

					�¨·¦«e�¨¦²§¨

					���

					���

					���

					���

					�¨ª¬¶·¨µ¶

					Figure 15-8. Four-wide SIMD processor: The four ALUs share fetch/

					decode logic

					The number of data elements that are processed simultaneously by

					a single instruction is sometimes referred to as the SIMD width of the

					instruction or the processor executing the instruction. In Figure 15-8, four

					ALUs share the same control logic, so this may be described as a four-wide

					SIMD processor.

					GPU processors are not the only processors that implement SIMD

					instruction sets. Other processor types also implement SIMD instruction

					sets to improve efficiency when processing large sets of data. The main

					difference between GPU processors and other processor types is that GPU

					362

					www. dbooks . or g

					[bookmark: 383_0]
				

			

		

		
			
				
					
				
			

			
				
					ChaPTer 15 ProGramminG for GPUs

					processors rely on executing multiple data elements in parallel to achieve

					good performance and that GPU processors may support wider SIMD

					widths than other processor types. For example, it is not uncommon for

					GPU processors to support SIMD widths of 16, 32, or more data elements.

					PROGRAMMING MODELS: SPMD AND SIMD

					although GPU processors implement simD instruction sets with varying widths,

					this is usually an implementation detail and is transparent to the application

					executing data-parallel kernels on the GPU processor. This is because many GPU

					compilers and runtime aPis implement a Single Program, Multiple Data or SPMD

					programming model, where the GPU compiler and runtime aPi determine the

					most efficient group of data elements to process with a simD instruction stream,

					rather than expressing the simD instructions explicitly. The “sub-Groups” section

					of Chapter 9 explores cases where the grouping of data elements is visible to

					applications.

					In Figure 15-9, we have widened each of our execution resources to

					support four-wide SIMD, allowing us to process four times as many matrix

					rows in parallel.

					���

					�»¨¦¸·¬²±ꢀ�¨¶²¸µ¦¨¶

					�¬»¨§ꢀ�¸±¦·¬²±¶

					ꢁ

					ꢂ

					ꢃ

					ꢄ

					ꢅ

					ꢆ

					ꢇ

					ꢈ

					ꢉ

					ꢊ

					ꢂꢁ ꢂꢂ ꢂꢃ ꢂꢄ ꢂꢅ ꢂꢆ

					ꢂꢇ ꢂꢈ ꢂꢉ ꢂꢊ ꢃꢁ ꢃꢂ ꢃꢃ ꢃꢄ ꢃꢅ ꢃꢆ ꢃꢇ ꢃꢈ ꢃꢉ ꢃꢊ ꢄꢁ ꢄꢂ

					ꢄꢃ ꢄꢄ ꢄꢅ ꢄꢆ ꢄꢇ ꢄꢈ ꢄꢉ ꢄꢊ ꢅꢁ ꢅꢂ ꢅꢃ ꢅꢄ ꢅꢅ ꢅꢆ ꢅꢇ ꢋꢋꢋ

					�¤¦«¨¶ꢀ¤±§ꢀ�¨°²µ¼

					Figure 15-9. Executing a somewhat-parallel kernel on SIMD processors

					363

					[bookmark: 384_0]
				

			

		

		
			
				
					
				
			

			
				
					ChaPTer 15 ProGramminG for GPUs

					The use of SIMD instructions that process multiple data elements

					in parallel is one of the ways that the performance of the parallel matrix

					multiplication kernels in Figures 15-5 and 15-7 is able to scale beyond the

					number of processors alone. The use of SIMD instructions also provides

					natural locality benefits in many cases, including matrix multiplication, by

					executing consecutive data elements on the same processor.

					Kernels benefit from parallelism across processors and parallelism

					within processors!

					Predication and Masking

					Sharing an instruction stream among multiple data elements works well

					so long as all data elements take the same path through conditional code

					in a kernel. When data elements take different paths through conditional

					code, control flow is said to diverge. When control flow diverges in a SIMD

					instruction stream, usually both control flow paths are executed, with

					some channels masked off or predicated. This ensures correct behavior,

					but the correctness comes at a performance cost since channels that are

					masked do not perform useful work.

					To show how predication and masking works, consider the kernel in

					Figure 15-10, which multiplies each data element with an “odd” index by

					two and increments each data element with an “even” index by one.

					h.parallel_for(array_size, [=](id<1> i) {

					auto condition = i[0] & 1;

					if (condition)

					dataAcc[i] = dataAcc[i] * 2; // odd

					else

					dataAcc[i] = dataAcc[i] + 1; // even

					});

					Figure 15-10. Kernel with divergent control flow

					364

					www. dbooks . or g

					[bookmark: 385_0]
					[bookmark: 385_1]
				

			

		

		
			
				
					
				
			

			
				
					ChaPTer 15 ProGramminG for GPUs

					Let’s say that we execute this kernel on the four-wide SIMD processor

					shown in Figure 15-8 and that we execute the first four data elements in

					one SIMD instruction stream and the next four data elements in a different

					SIMD instruction stream and so on. Figure 15-11 shows one of the ways

					channels may be masked and execution may be predicated to correctly

					execute this kernel with divergent control flow.

					�«¤±±¨¯ꢀ�¤¶®ꢁ

					3

					2

					1

					0

					�

					�

					�

					�

					ꢀꢀꢁ$OOꢁ&KDQQHOVꢁ(QDEOHGꢁ,QLWLDOO\ꢂ

					ꢀꢀꢁ$OOꢁ&KDQQHOVꢁ(QDEOHGꢁIRUꢁ&RQGLWLRQꢂ

					FRQGLWLRQꢁ ꢁLꢄJHWꢁꢅꢆꢇꢁꢈꢁꢉ

					�

					�

					�

					�

					ꢀꢀꢁ(YHQꢁ&KDQQHOVꢁ'LVDEOHGꢁE\ꢁ³LI´ꢂ

					LIꢁFRQGLWLRQ

					�

					�

					�

					�

					�

					�

					�

					�

					�

					�

					�

					�

					�

					�

					�

					�

					�

					�

					�

					�

					ꢀꢀꢁ2GGꢁ,QGLFHVꢁ0XOWLSOLHGꢁE\ꢁ7ZRꢂ

					GDWD$FFꢁ>L@ꢁ ꢁGDWD$FF>L@ꢁꢁꢊꢁꢋꢁ

					ꢀꢀꢁ(QDEOHGꢁ&KDQQHOVꢁ,QYHUWHGꢁE\ꢁ³HOVH´ꢂ

					HOVH

					ꢀꢀꢁ(YHQꢁ,QGLFHVꢁ,QFUHPHQWHGꢁE\ꢁ2QHꢂ

					GDWD$FFꢁ>L@ꢁ ꢁGDWD$FF>L@ꢁꢁꢌꢁꢉꢁ

					ꢀꢀꢁ3RVVLEOHꢁ5Hꢃ&RQYHUJHQFHꢁ$IWHUꢁ³LI´ꢂ

					Figure 15-11. Possible channel masks for a divergent kernel

					SIMD Efficiency

					SIMD efficiency measures how well a SIMD instruction stream performs

					compared to equivalent scalar instruction streams. In Figure 15-11,

					since control flow partitioned the channels into two equal groups, each

					instruction in the divergent control flow executes with half efficiency.

					In a worst-case scenario, for highly divergent kernels, efficiency may be

					reduced by a factor of the processor’s SIMD width.

					365

					[bookmark: 386_0]
				

			

		

		
			
				
					ChaPTer 15 ProGramminG for GPUs

					All processors that implement a SIMD instruction set will suffer

					from divergence penalties that affect SIMD efficiency, but because GPU

					processors typically support wider SIMD widths than other processor

					types, restructuring an algorithm to minimize divergent control flow

					and maximize converged execution may be especially beneficial when

					optimizing a kernel for a GPU. This is not always possible, but as an

					example, choosing to parallelize along a dimension with more converged

					execution may perform better than parallelizing along a different

					dimension with highly divergent execution.

					SIMD Efficiency and Groups of Items

					All kernels in this chapter so far have been basic data-parallel kernels that

					do not specify any grouping of items in the execution range, which gives

					an implementation freedom to choose the best grouping for a device. For

					example, a device with a wider SIMD width may prefer a larger grouping, but

					a device with a narrower SIMD width may be fine with smaller groupings.

					When a kernel is an ND-range kernel with explicit groupings of work-

					items, care should be taken to choose an ND-range work-group size

					that maximizes SIMD efficiency. When a work-group size is not evenly

					divisible by a processor’s SIMD width, part of the work-group may execute

					with channels disabled for the entire duration of the kernel. The kernel

					preferred_work_group_size_multiplequery can be used to choose an

					efficient work-group size. Please refer to Chapter 12 for more information

					on how to query properties of a device.

					Choosing a work-group size consisting of a single work-item will likely

					perform very poorly since many GPUs will implement a single-work-item

					work-group by masking off all SIMD channels except for one. For example,

					the kernel in Figure 15-12 will likely perform much worse than the very

					similar kernel in Figure 15-5, even though the only significant difference

					between the two is a change from a basic data-parallel kernel to an

					inefficient single-work-item ND-range kernel (nd_range<1>{M, 1}).

					366

					www. dbooks . or g

				

			

		

		
			
				
					ChaPTer 15 ProGramminG for GPUs

					// A work-group consisting of a single work-item is inefficient!

					h.parallel_for(nd_range<1>{M, 1}, [=](nd_item<1> idx) {

					int m = idx.get_global_id(0);

					for (int n = 0; n < N; n++) {

					T sum = 0;

					for (int k = 0; k < K; k++)

					sum += matrixA[m * K + k] * matrixB[k * N + n];

					matrixC[m * N + n] = sum;

					}

					});

					Figure 15-12. Inefficient single-item, somewhat-parallel matrix

					multiplication

					Switching Work to Hide Latency

					Many GPUs implement one more technique to simplify control logic,

					maximize execution resources, and improve performance: instead of

					executing a single instruction stream on a processor, many GPUs allow

					multiple instruction streams to be resident on a processor simultaneously.

					Having multiple instruction streams resident on a processor is

					beneficial because it gives each processor a choice of work to execute. If

					one instruction stream is performing a long-latency operation, such as

					a read from memory, the processor can switch to a different instruction

					stream that is ready to run instead of waiting for the operation to complete.

					With enough instruction streams, by the time that the processor switches

					back to the original instruction stream, the long-latency operation may

					have completed without requiring the processor to wait at all.

					Figure 15-13 shows how a processor uses multiple simultaneous

					instruction streams to hide latency and improve performance. Even

					though the first instruction stream took a little longer to execute with

					multiple streams, by switching to other instruction streams, the processor

					was able to find work that was ready to execute and never needed to idly

					wait for the long operation to complete.

					367

					[bookmark: 388_0]
					[bookmark: 388_1]
				

			

		

		
			
				
					
				
			

			
				
					ChaPTer 15 ProGramminG for GPUs

					Long

					Wait for Operation

					Op

					Op

					Op

					Operation

					to Complete...

					vs.

					Long

					Wait for Operation

					to Complete...

					Switch! Op

					Operation

					Long

					Op

					Wait for Operation

					to Complete...

					Switch!

					Operation

					Long

					Op

					Switch!

					Wait...

					Operation

					Figure 15-13. Switching instruction streams to hide latency

					GPU profiling tools may describe the number of instruction streams

					that a GPU processor is currently executing vs. the theoretical total number

					of instruction streams using a term such as occupancy.

					Low occupancy does not necessarily imply low performance, since

					it is possible that a small number of instruction streams will keep a

					processor busy. Likewise, high occupancy does not necessarily imply high

					performance, since a GPU processor may still need to wait if all instruction

					streams perform inefficient, long-latency operations. All else being equal

					though, increasing occupancy maximizes a GPU processor’s ability to hide

					latency and will usually improve performance. Increasing occupancy is

					another reason why performance may improve with the even more parallel

					kernel in Figure 15-7.

					This technique of switching between multiple instruction streams

					to hide latency is especially well-suited for GPUs and data-parallel

					processing. Recall from Figure 15-2 that GPU processors are frequently

					simpler than other processor types and hence lack complex latency-hiding

					features. This makes GPU processors more susceptible to latency issues,

					but because data-parallel programming involves processing a lot of data,

					GPU processors usually have plenty of instruction streams to execute!

					368

					www. dbooks . or g

					[bookmark: 389_0]
				

			

		

		
			
				
					
				
			

			
				
					ChaPTer 15 ProGramminG for GPUs

					Offloading Kernels to GPUs

					This section describes how an application, the SYCL runtime library,

					and the GPU software driver work together to offload a kernel on GPU

					hardware. The diagram in Figure 15-14 shows a typical software stack with

					these layers of abstraction. In many cases, the existence of these layers

					is transparent to an application, but it is important to understand and

					account for them when debugging or profiling our application.

					SYCL Application

					SYCL Runtime Library

					GPU Software Driver

					GPU Hardware

					Figure 15-14. Offloading parallel kernels to GPUs (simplified)

					SYCL Runtime Library

					The SYCL runtime library is the primary software library that SYCL

					applications interface with. The runtime library is responsible for

					implementing classes such as queues, buffers, and accessorsand the

					member functions of these classes. Parts of the runtime library may be in

					header files and hence directly compiled into the application executable.

					Other parts of the runtime library are implemented as library functions,

					which are linked with the application executable as part of the application

					build process. The runtime library is usually not device-specific, and the

					same runtime library may orchestrate offload to CPUs, GPUs, FPGAs, or

					other devices.

					369

					[bookmark: 390_0]
					[bookmark: 390_1]
					[bookmark: 390_2]
					[bookmark: 390_3]
				

			

		

		
			
				
					
				
			

			
				
					ChaPTer 15 ProGramminG for GPUs

					GPU Software Drivers

					Although it is theoretically possible that a SYCL runtime library could

					offload directly to a GPU, in practice, most SYCL runtime libraries interface

					with a GPU software driver to submit work to a GPU.

					A GPU software driver is typically an implementation of an API,

					such as OpenCL, Level Zero, or CUDA. Most of a GPU software driver is

					implemented in a user-mode driver library that the SYCL runtime calls

					into, and the user-mode driver may call into the operating system or

					a kernel-mode driver to perform system-level tasks such as allocating

					memory or submitting work to the device. The user-mode driver may also

					invoke other user-mode libraries; for example, the GPU driver may invoke

					a GPU compiler to just-in-time compile a kernel from an intermediate

					representation to GPU ISA (Instruction Set Architecture). These software

					modules and the interactions between them are shown in Figure 15-15.

					SYCL Runtime Library

					API Calls

					User-Mode Support

					GPU Software User-Mode Driver

					Libraries or Compilers

					User Mode

					Kernel Mode

					Operating Systems

					GPU Software Kernel-Mode Driver

					Services

					Software

					Hardware

					GPU Hardware

					Figure 15-15. Typical GPU software driver modules

					370

					www. dbooks . or g

					[bookmark: 391_0]
					[bookmark: 391_1]
					[bookmark: 391_2]
				

			

		

		
			
				
					ChaPTer 15 ProGramminG for GPUs

					GPU Hardware

					When the runtime library or the GPU software user-mode driver is

					explicitly requested to submit work or when the GPU software heuristically

					determines that work should begin, it will typically call through the

					operating system or a kernel-mode driver to start executing work on the

					GPU. In some cases, the GPU software user-mode driver may submit work

					directly to the GPU, but this is less common and may not be supported by

					all devices or operating systems.

					When the results of work executed on a GPU are consumed by the host

					processor or another accelerator, the GPU must issue a signal to indicate

					that work is complete. The steps involved in work completion are very

					similar to the steps for work submission, executed in reverse: the GPU

					may signal the operating system or kernel-mode driver that it has finished

					execution, then the user-mode driver will be informed, and finally the

					runtime library will observe that work has completed via GPU software API

					calls.

					Each of these steps introduces latency, and in many cases, the runtime

					library and the GPU software are making a tradeoff between lower latency

					and higher throughput. For example, submitting work to the GPU more

					frequently may reduce latency, but submitting frequently may also reduce

					throughput due to per-submission overheads. Collecting large batches

					of work increases latency but amortizes submission overheads over

					more work and introduces more opportunities for parallel execution.

					The runtime and drivers are tuned to make the right tradeoff and usually

					do a good job, but if we suspect that driver heuristics are submitting

					work inefficiently, we should consult documentation to see if there are

					ways to override the default driver behavior using API-specific or even

					implementation-specific mechanisms.

					371

					[bookmark: 392_0]
				

			

		

		
			
				
					
				
			

			
				
					ChaPTer 15 ProGramminG for GPUs

					Beware the Cost of Offloading!

					Although SYCL implementations and GPU vendors are continually

					innovating and optimizing to reduce the cost of offloading work to a GPU,

					there will always be overhead involved both when starting work on a

					GPU and observing results on the host or another device. When choosing

					where to execute an algorithm, consider both the benefit of executing

					an algorithm on a device and the cost of moving the algorithm and any

					data that it requires to the device. In some cases, it may be most efficient

					to perform a parallel operation using the host processor—or to execute a

					serial part of an algorithm inefficiently on the GPU—to avoid the overhead

					of moving an algorithm from one processor to another.

					Consider the performance of our algorithm as a whole—it may be

					most efficient to execute part of an algorithm inefficiently on one

					device than to transfer execution to another device!

					Transfers to and from Device Memory

					On GPUs with dedicated memory, be especially aware of transfer costs

					between dedicated GPU memory and memory on the host or another

					device. Figure 15-16 shows typical memory bandwidth differences

					between different memory types in a system.

					372

					www. dbooks . or g

					[bookmark: 393_0]
					[bookmark: 393_1]
				

			

		

		
			
				
					
				
			

			
				
					ChaPTer 15 ProGramminG for GPUs

					���

					�¨°²·¨ꢀ���

					�»¨¦¸·¬²±ꢀ

					�»¨¦¸·¬²±ꢀ

					�¨¶²¸µ¦¨¶

					�¨°²·¨

					�²¦¤¯ꢀ�¦¦¨¶¶ꢁ

					Pꢂꢃꢃꢀ²µꢀ

					�¨¶²¸µ¦¨¶

					�¦¦¨¶¶ꢁ

					�¤µ¬¤¥¯¨ꢀ

					��e¶

					�¨§¬¦¤·¨§

					�¨¹¬¦¨

					�¨°²µ¼

					�¨§¬¦¤·¨§

					�¨¹¬¦¨

					�¨°²µ¼

					�²µ¨ꢀ��e¶

					�²¶·ꢀ�¦¦¨¶¶ꢁꢀPꢂꢃꢀ��e¶

					�¼¶·¨°ꢀ�¨°²µ¼

					Figure 15-16. Typical differences between device memory, remote

					memory, and host memory

					Recall from Chapter 3 that GPUs prefer to operate on dedicated

					device memory, which can be faster by an order of magnitude or more,

					instead of operating on host memory or another device’s memory. Even

					though accesses to dedicated device memory are significantly faster than

					accesses to remote memory or system memory, if the data is not already in

					dedicated device memory then it must be copied or migrated.

					So long as the data will be accessed frequently, moving it into

					dedicated device memory is beneficial, especially if the transfer can

					be performed asynchronously while the GPU execution resources are

					busy processing another task. When the data is accessed infrequently or

					unpredictably though, it may preferable to save transfer costs and operate

					on the data remotely or in system memory, even if per-access costs are

					higher. Chapter 6 describes ways to control where memory is allocated

					and different techniques to copy and prefetch data into dedicated device

					memory. These techniques are important when optimizing program

					execution for GPUs.

					373

					[bookmark: 394_0]
					[bookmark: 394_1]
				

			

		

		
			
				
					
				
			

			
				
					ChaPTer 15 ProGramminG for GPUs

					GPU Kernel Best Practices

					The previous sections described how the dispatch parameters passed to a

					parallel_foraffect how kernels are assigned to GPU processor resources

					and the software layers and overheads involved in executing a kernel on a GPU.

					This section describes best practices when a kernel is executing on a GPU.

					Broadly speaking, kernels are either memory bound, meaning that their

					performance is limited by data read and write operations into or out of the

					execution resources on the GPU, or are compute bound, meaning that their

					performance is limited by the execution resources on the GPU. A good first

					step when optimizing a kernel for a GPU—and many other processors!—is

					to determine whether our kernel is memory bound or compute bound,

					since the techniques to improve a memory-bound kernel frequently will

					not benefit a compute-bound kernel and vice versa. GPU vendors often

					provide profiling tools to help make this determination.

					Different optimization techniques are needed depending whether our

					kernel is memory bound or compute bound!

					Because GPUs tend to have many processors and wide SIMD widths,

					kernels tend to be memory bound more often than they are compute

					bound. If we are unsure where to start, examining how our kernel accesses

					memory is a good first step.

					Accessing Global Memory

					Efficiently accessing global memory is critical for optimal application

					performance, because almost all data that a work-item or work-group

					operates on originates in global memory. If a kernel operates on global

					memory inefficiently, it will almost always perform poorly. Even though

					GPUs often include dedicated hardware gather and scatter units for

					374

					www. dbooks . or g

					[bookmark: 395_0]
					[bookmark: 395_1]
				

			

		

		
			
				
					
				
			

			
				
					ChaPTer 15 ProGramminG for GPUs

					reading and writing arbitrary locations in memory, the performance

					of accesses to global memory is usually driven by the locality of data

					accesses. If one work-item in a work-group is accessing an element in

					memory that is adjacent to an element accessed by another work-item

					in the work-group, the global memory access performance is likely to

					be good. If work-items in a work-group instead access memory that is

					strided or random, the global memory access performance will likely be

					worse. Some GPU documentation describes operating on nearby memory

					accesses as coalesced memory accesses.

					Recall that for our somewhat-parallel matrix multiplication kernel in

					Figure 15-15,we had a choice whether to process a row or a column of

					the result matrix in parallel, and we chose to operate on rows of the result

					matrix in parallel. This turns out to be a poor choice: if one work-item with

					idequal to mis grouped with a neighboring work-item with id equal to m-1

					or m+1, the indices used to access matrixBare the same for each work-item,

					but the indices used to access matrixAdiffer by K, meaning the accesses

					are highly strided. The access pattern for matrixAis shown in Figure 15-17.

					Figure 15-17. Accesses to matrixA are highly strided and inefficient

					375

					[bookmark: 396_0]
				

			

		

		
			
				
					ChaPTer 15 ProGramminG for GPUs

					If, instead, we choose to process columns of the result matrix in

					parallel, the access patterns have much better locality. The kernel in

					Figure 15-18 is structurally very similar to that in Figure 15-5 with the only

					difference being that each work-item in Figure 15-18 operates on a column

					of the result matrix, rather than a row of the result matrix.

					// This kernel processes columns of the result matrix in parallel.

					h.parallel_for(N, [=](item<1> idx) {

					int n = idx[0];

					for (int m = 0; m < M; m++) {

					T sum = 0;

					for (int k = 0; k < K; k++)

					sum += matrixA[m * K + k] * matrixB[k * N + n];

					matrixC[m * N + n] = sum;

					}

					});

					Figure 15-18. Computing columns of the result matrix in parallel,

					not rows

					Even though the two kernels are structurally very similar, the kernel

					that operates on columns of data will significantly outperform the kernel

					that operates on rows of data on many GPUs, purely due to the more

					efficient memory accesses: if one work-item with id equal to nis grouped

					with a neighboring work-item with id equal to n-1or n+1, the indices used

					to access matrixAare now the same for each work-item, and the indices

					used to access matrixBare consecutive. The access pattern for matrixBis

					shown in Figure 15-19.

					376

					www. dbooks . or g

					[bookmark: 397_0]
				

			

		

		
			
				
					
				
			

			
				
					ChaPTer 15 ProGramminG for GPUs

					Figure 15-19. Accesses to matrixB are consecutive and efficient

					Accesses to consecutive data are usually very efficient. A good rule of

					thumb is that the performance of accesses to global memory for a group of

					work-items is a function of the number of GPU cache lines accessed. If all

					accesses are within a single cache line, the access will execute with peak

					performance. If an access requires two cache lines, say by accessing every

					other element or by starting from a cache-misaligned address, the access

					may operate at half performance. When each work-item in the group

					accesses a unique cache line, say for a very strided or random accesses, the

					access is likely to operate at lowest performance.

					377

					[bookmark: 398_0]
				

			

		

		
			
				
					
				
			

			
				
					ChaPTer 15 ProGramminG for GPUs

					PROFILING KERNEL VARIANTS

					for matrix multiplication, choosing to parallelize along one dimension clearly

					results in more efficient memory accesses, but for other kernels, the choice

					may not be as obvious. for kernels where it is important to achieve the best

					performance, if it is not obvious which dimension to parallelize, it is sometimes

					worth developing and profiling different kernel variants that parallelize along

					each dimension to see what works better for a device and data set.

					Accessing Work-Group Local Memory

					In the previous section, we described how accesses to global memory benefit

					from locality, to maximize cache performance. As we saw, in some cases we

					can design our algorithm to efficiently access memory, such as by choosing

					to parallelize in one dimension instead of another. This technique isn’t

					possible in all cases, however. This section describes how we can use work-

					group local memory to efficiently support more memory access patterns.

					Recall from Chapter 9 that work-items in a work-group can cooperate

					to solve a problem by communicating through work-group local memory

					and synchronizing using work-group barriers. This technique is especially

					beneficial for GPUs, since typical GPUs have specialized hardware

					to implement both barriers and work-group local memory. Different

					GPU vendors and different products may implement work-group local

					memory differently, but work-group local memory frequently has two

					benefits compared to global memory: local memory may support higher

					bandwidth and lower latency than accesses to global memory, even when

					the global memory access hits a cache, and local memory is often divided

					into different memory regions, called banks. So long as each work-item in

					a group accesses a different bank, the local memory access executes with

					full performance. Banked accesses allow local memory to support far more

					access patterns with peak performance than global memory.

					378

					www. dbooks . or g

					[bookmark: 399_0]
					[bookmark: 399_1]
				

			

		

		
			
				
					
				
			

			
				
					ChaPTer 15 ProGramminG for GPUs

					Many GPU vendors will assign consecutive local memory addresses

					to different banks. This ensures that consecutive memory accesses always

					operate at full performance, regardless of the starting address. When

					memory accesses are strided, though, some work-items in a group may

					access memory addresses assigned to the same bank. When this occurs,

					it is considered a bank conflict and results in serialized access and lower

					performance.

					for maximum global memory performance, minimize the number of

					cache lines accessed.

					for maximum local memory performance, minimize the number of

					bank conflicts!

					A summary of access patterns and expected performance for global

					memory and local memory is shown in Figure 15-20. Assume that

					when ptrpoints to global memory, the pointer is aligned to the size of a

					GPU cache line. The best performance when accessing global memory

					can be achieved by accessing memory consecutively starting from a

					cache-aligned address. Accessing an unaligned address will likely lower

					global memory performance because the access may require accessing

					additional cache lines. Because accessing an unaligned local address will

					not result in additional bank conflicts, the local memory performance is

					unchanged.

					The strided case is worth describing in more detail. Accessing every

					other element in global memory requires accessing more cache lines and

					will likely result in lower performance. Accessing every other element

					in local memory may result in bank conflicts and lower performance, but

					only if the number of banks is divisible by two. If the number of banks is

					odd, this case will operate at full performance also.

					379

				

			

		

		
			
				
					
				
			

			
				
					ChaPTer 15 ProGramminG for GPUs

					When the stride between accesses is very large, each work-item

					accesses a unique cache line, resulting in the worst performance. For local

					memory though, the performance depends on the stride and the number

					of banks. When the stride Nis equal to the number of banks, each access

					results in a bank conflict, and all accesses are serialized, resulting in the

					worst performance. If the stride Mand the number of banks share no

					common factors, however, the accesses will run at full performance. For

					this reason, many optimized GPU kernels will pad data structures in local

					memory to choose a stride that reduces or eliminates bank conflicts.

					Global Memory:

					Local Memory:

					ptr[id]

					ptr[id + 1]

					ptr[id * 2]

					ptr[id * N]

					ptr[id * M]

					Full Performance!

					Full Performance!

					Lower Performance

					Lower Performance

					Worst Performance

					Worst Performance

					Full Performance!

					Lower Performance

					Worst Performance

					Full Performance!

					Figure 15-20. Possible performance for different access patterns, for

					global and local memory

					Avoiding Local Memory Entirely with

					Sub-Groups

					As discussed in Chapter 9, sub-group collective functions are an

					alternative way to exchange data between work-items in a group. For many

					GPUs, a sub-group represents a collection of work-items processed by a

					380

					www. dbooks . or g

					[bookmark: 401_0]
					[bookmark: 401_1]
				

			

		

		
			
				
					ChaPTer 15 ProGramminG for GPUs

					single instruction stream. In these cases, the work-items in the sub-group

					can inexpensively exchange data and synchronize without using work-

					group local memory. Many of the best-performing GPU kernels use sub-

					groups, so for expensive kernels, it is well worth examining if our algorithm

					can be reformulated to use sub-group collective functions.

					Optimizing Computation Using Small Data Types

					This section describes techniques to optimize kernels after eliminating

					or reducing memory access bottlenecks. One very important perspective

					to keep in mind is that GPUs have traditionally been designed to draw

					pictures on a screen. Although pure computational capabilities of GPUs

					have evolved and improved over time, in some areas their graphics

					heritage is still apparent.

					Consider support for kernel data types, for example. Many GPUs

					are highly optimized for 32-bit floating-point operations, since these

					operations tend to be common in graphics and games. For algorithms that

					can cope with lower precision, many GPUs also support a lower-precision

					16-bit floating-point type that trades precision for faster processing.

					Conversely, although many GPUs do support 64-bit double-precision

					floating-point operations, the extra precision will come at a cost, and 32-bit

					operations usually perform much better than their 64-bit equivalents.

					The same is true for integer data types, where 32-bit integer data types

					typically perform better than 64-bit integer data types and 16-bit integers

					may perform even better still. If we can structure our computation to use

					smaller integers, our kernel may perform faster. One area to pay careful

					attention to are addressing operations, which typically operate on 64-bit

					size_tdata types, but can sometimes be rearranged to perform most of

					the calculation using 32-bit data types. In some local memory cases, 16 bits

					of indexing is sufficient, since most local memory allocations are small.

					381

					[bookmark: 402_0]
					[bookmark: 402_1]
				

			

		

		
			
				
					
				
			

			
				
					ChaPTer 15 ProGramminG for GPUs

					Optimizing Math Functions

					Another area where a kernel may trade off accuracy for performance

					involves SYCL built-in functions. SYCL includes a rich set of math functions

					with well-defined accuracy across a range of inputs. Most GPUs do not

					support these functions natively and implement them using a long sequence

					of other instructions. Although the math function implementations are

					typically well-optimized for a GPU, if our application can tolerate lower

					accuracy, we should consider a different implementation with lower

					accuracy and higher performance instead. Please refer to Chapter 18 for

					more information about SYCL built-in functions.

					For commonly used math functions, the SYCL library includes fast

					or nativefunction variants with reduced or implementation-defined

					accuracy requirements. For some GPUs, these functions can be an order

					of magnitude faster than their precise equivalents, so they are well worth

					considering if they have enough precision for an algorithm. For example,

					many image postprocessing algorithms have well-defined inputs and can

					tolerate lower accuracy and hence are good candidates for using fastor

					nativemath functions.

					if an algorithm can tolerate lower precision, we can use smaller data

					types or lower-precision math functions to increase performance!

					Specialized Functions and Extensions

					One final consideration when optimizing a kernel for a GPU are

					specialized instructions that are common in many GPUs. As one example,

					nearly all GPUs support a mador fmamultiply-and-add instruction that

					performs two operations in a single clock. GPU compilers are generally

					very good at identifying and optimizing individual multiplies and adds

					to use a single instruction instead, but SYCL also includes madand fma

					382

					www. dbooks . or g

					[bookmark: 403_0]
					[bookmark: 403_1]
					[bookmark: 403_2]
				

			

		

		
			
				
					ChaPTer 15 ProGramminG for GPUs

					functions that can be called explicitly. Of course, if we expect our GPU

					compiler to optimize multiplies and adds for us, we should be sure that we

					do not prevent optimizations by disabling floating-point contractions!

					Other specialized GPU instructions may only be available via compiler

					optimizations or extensions to the SYCL language. For example, some

					GPUs support a specialized dot-product-and-accumulate instruction that

					compilers will try to identify and optimize for or that can be called directly.

					Refer to Chapter 12 for more information on how to query the extensions

					that are supported by a GPU implementation.

					Summary

					In this chapter, we started by describing how typical GPUs work and how

					GPUs are different than traditional CPUs. We described how GPUs are

					optimized for large amounts of data, by trading processor features that

					accelerate a single instruction stream for additional processors.

					We described how GPUs process multiple data elements in parallel

					using wide SIMD instructions and how GPUs use predication and masking

					to execute kernels with complex flow control using SIMD instructions.

					We discussed how predication and masking can reduce SIMD efficiency

					and decrease performance for kernels that are highly divergent and how

					choosing to parallelize along one dimension vs. another may reduce SIMD

					divergence.

					Because GPUs have so many processing resources, we discussed how

					it is important to give GPUs enough work to keep occupancy high. We also

					described how GPUs use instruction streams to hide latency, making it

					even more crucial to give GPUs lots of work to execute.

					Next, we discussed the software and hardware layers involved in

					offloading a kernel to a GPU and the costs of offloading. We discussed how

					it may be more efficient to execute an algorithm on a single device than it

					is to transfer execution from one device to another.

					383

					[bookmark: 404_0]
				

			

		

		
			
				
					ChaPTer 15 ProGramminG for GPUs

					Finally, we described best practices for kernels once they are executing

					on a GPU. We described how many kernels start off memory bound and

					how to access global memory and local memory efficiently or how to

					avoid local memory entirely by using sub-group operations. When kernels

					are compute bound instead, we described how to optimize computation

					by trading lower precision for higher performance or using custom GPU

					extensions to access specialized instructions.

					For More Information

					There is much more to learn about GPU programming, and this chapter

					just scratched the surface!

					GPU specifications and white papers are a great way to learn more

					about specific GPUs and GPU architectures. Many GPU vendors provide

					very detailed information about their GPUs and how to program them.

					At the time of this writing, relevant reading about major GPUs can be

					found on software.intel.com, devblogs.nvidia.com, and amd.com.

					Some GPU vendors have open source drivers or driver components.

					When available, it can be instructive to inspect or step through driver code,

					to get a sense for which operations are expensive or where overheads may

					exist in an application.

					This chapter focused entirely on traditional accesses to global memory

					via buffer accessors or Unified Shared Memory, but most GPUs also

					include a fixed-function texture sampler that can accelerate operations on

					images. For more information about images and samplers, please refer to

					the SYCL specification.

					384

					www. dbooks . or g

					[bookmark: 405_0]
				

			

		

		
			
				
					
				
			

			
				
					ChaPTer 15 ProGramminG for GPUs

					Open Access This chapter is licensed under the terms

					of the Creative Commons Attribution 4.0 International

					License (http://creativecommons.org/licenses/by/4.0/), which permits

					use, sharing, adaptation, distribution and reproduction in any medium or

					format, as long as you give appropriate credit to the original author(s) and

					the source, provide a link to the Creative Commons license and indicate if

					changes were made.

					The images or other third party material in this chapter are included

					in the chapter’s Creative Commons license, unless indicated otherwise

					in a credit line to the material. If material is not included in the chapter’s

					Creative Commons license and your intended use is not permitted by

					statutory regulation or exceeds the permitted use, you will need to obtain

					permission directly from the copyright holder.

					385

				

			

		

		
			
				
					
				
			

			
				
					CHAPTER 16

					Programming for

					CPUs

					Kernel programming originally became popular as a way to program

					GPUs. As kernel programming is generalized, it is important to understand

					how our style of programming affects the mapping of our code to a CPU.

					The CPU has evolved over the years. A major shift occurred around

					2005 when performance gains from increasing clock speeds diminished.

					Parallelism arose as the favored solution—instead of increasing clock

					speeds, CPU producers introduced multicore chips. Computers became

					more effective in performing multiple tasks at the same time!

					While multicore prevailed as the path for increasing hardware

					performance, releasing that gain in software required non-trivial effort.

					Multicore processors required developers to come up with different

					algorithms so the hardware improvements could be noticeable, and this

					was not always easy. The more cores that we have, the harder it is to keep

					them efficiently busy. DPC++ is one of the programming languages that

					address these challenges, with many constructs that help to exploit various

					forms of parallelism on CPUs (and other architectures).

					© Intel Corporation 2021

					J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-5574-2_16

					387

					www. dbooks . or g

					[bookmark: 407_0]
					[bookmark: 407_1]
				

			

		

		
			
				
					Chapter 16 programming for CpUs

					This chapter discusses some particulars of CPU architectures, how

					CPU hardware executes DPC++ applications, and offers best practices

					when writing a DPC++ code for a CPU platform.

					Performance Caveats

					DPC++ paves a portable path to parallelize our applications or to develop

					parallel applications from scratch. The application performance of a

					program, when run on CPUs, is largely dependent upon the following

					factors:

					•

					•

					•

					•

					•

					The underlying performance of the single invocation

					and execution of kernel code

					The percentage of the program that runs in a parallel

					kernel and its scalability

					CPU utilization, effective data sharing, data locality,

					and load balancing

					The amount of synchronization and communication

					between work-items

					The overhead introduced to create, resume, manage,

					suspend, destroy, and synchronize the threads that

					work-items execute on, which is made worse by the

					number of serial-to-parallel or parallel-to-serial

					transitions

					•

					•

					Memory conflicts caused by shared memory or falsely

					shared memory

					Performance limitations of shared resources such

					as memory, write combining buffers, and memory

					bandwidth

					388

					[bookmark: 408_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 16 programming for CpUs

					In addition, as with any processor type, CPUs may differ from vendor

					to vendor or even from product generation to product generation. The best

					practices for one CPU may not be best practices for a different CPU and

					configuration.

					to achieve optimal performance on a CpU, understand as many

					characteristics of the CpU architecture as possible!

					The Basics of a General-Purpose CPU

					Emergence and rapid advancements in multicore CPUs have driven

					substantial acceptance of shared memory parallel computing platforms.

					CPUs offer parallel computing platforms at laptop, desktop, and

					server levels, making them ubiquitous and exposing performance

					almost everywhere. The most common form of CPU architecture is

					cache-coherent Non-Uniform Memory Access (cc-NUMA), which is

					characterized by access times not being completely uniform. Even many

					small dual-socket general-purpose CPU systems have this kind of memory

					system. This architecture has become dominant because the number

					of cores in a processor, as well as the number of sockets, continues to

					increase.

					In a cc-NUMA CPU system, each socket connects to a subset of the

					total memory in the system. A cache-coherent interconnect glues all of

					the sockets together and provides a single system view for programmers.

					Such a memory system is scalable, because the aggregate memory

					bandwidth scales with the number of sockets in the system. The benefit of

					the interconnect is that an application has transparent access to all of the

					memory in the system, regardless of where the data resides. However, there

					is a cost: the latency to access data and instructions, from memory is no

					longer consistent (e.g., fixed access latency). The latency instead depends

					389

					www. dbooks . or g

					[bookmark: 409_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 16 programming for CpUs

					on where that data is stored in the system. In a good case, data comes from

					memory directly connected to the socket where code runs. In a bad case,

					data has to come from a memory connected to a socket far away in the

					system, and that cost of memory access can increase due to the number of

					hops in the interconnect between sockets on a cc-NUMA CPU system.

					In Figure 16-1, a generic CPU architecture with cc-NUMA memory

					is shown. This is a simplified system architecture containing cores and

					memory components found in contemporary, general-purpose, multisocket

					systems today. Throughout the remainder of this chapter, the figure will be

					used to illustrate the mapping of corresponding code examples.

					To achieve optimal performance, we need to be sure to understand

					the characteristics of the cc-NUMA configuration of a specific system.

					For example, recent servers from Intel make use of a mesh interconnect

					architecture. In this configuration, the cores, caches, and memory

					controllers are organized into rows and columns. Understanding the

					connectivity of processors with memory can be critical when working to

					achieve peak performance of the system.

					Figure 16-1. Generic multicore CPU system

					390

					[bookmark: 410_0]
				

			

		

		
			
				
					Chapter 16 programming for CpUs

					The system in Figure 16-1 has two sockets, each of which has two

					cores with four hardware threads per core. Each core has its own level 1

					(L1) cache. L1 caches are connected to a shared last-level cache, which

					is connected to the memory system on the socket. The memory access

					latency within a socket is uniform, meaning that it is consistent and can be

					predicted with accuracy.

					The two sockets are connected through a cache-coherent interconnect.

					Memory is distributed across the system, but all of the memory may be

					transparently accessed from anywhere in the system. The memory read

					and write latency is non-uniform when accessing memory that isn’t in the

					socket where code making the access is running, which means it imposes

					a potentially much longer and inconsistent latency when accessing data

					from a remote socket. A critical aspect of the interconnect, though, is

					coherency. We do not need to worry about data becoming inconsistent

					across the memory system (which would be a functional problem) and

					instead need to worry only about the performance impact of how we’re

					accessing the distributed memory system.

					Hardware threads in CPUs are the execution vehicles. These are the

					units that execute instruction streams (a thread in CPU terminology). The

					hardware threads in Figure 16-1 are numbered consecutively from 0 to 15,

					which is a notation used to simplify discussions on the examples in this

					chapter. Unless otherwise noted, all references to a CPU system in this

					chapter are to the reference cc-NUMA system shown in Figure 16-1.

					The Basics of SIMD Hardware

					In 1996, the first widely deployed SIMD (Single Instruction, Multiple Data

					according to Flynn’s taxonomy) instruction set was MMX extensions on

					top of the x86 architecture. Many SIMD instruction set extensions have

					since followed both on Intel architectures and more broadly across the

					industry. A CPU core carries out its job by executing instructions, and

					391

					www. dbooks . or g

					[bookmark: 411_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 16 programming for CpUs

					the specific instructions that a core knows how to execute are defined

					by the instruction set (e.g., x86, x86_64, AltiVec, NEON) and instruction

					set extensions (e.g., SSE, AVX, AVX-512) that it implements. Many of the

					operations added by instruction set extensions are focused on SIMD

					instructions.

					SIMD instructions allow multiple calculations to be carried out

					simultaneously on a single core by using a register and hardware that is

					bigger than the fundamental unit of data being processed. Using 512-bit

					registers, we can perform eight 64-bit calculations with a single machine

					instruction.

					KꢀSDUDOOHOBIRUꢁꢂꢃꢄꢅꢆ> @ꢁLGꢇꢂ!ꢈNꢉꢈ^

]>N@ꢈ ꢈ[>N@ꢈꢊꢈ\>N@ꢋ

					`ꢉꢋ

					Figure 16-2. SIMD execution in a CPU hardware thread

					392

					[bookmark: 412_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 16 programming for CpUs

					This example shown in Figure 16-2 could give us up to an eight times

					speed-up. In reality, it is likely to be somewhat curtailed as a portion of

					the eight times speed-up serves to remove one bottleneck and expose the

					next, such as memory throughput. In general, the performance benefit of

					using SIMD varies depending on the specific scenario, and in a few cases,

					it can even perform worse than simpler non-SIMD equivalent code. That

					said, considerable gains are achievable on today’s processors when we

					know when and how to apply (or have the compiler apply) SIMD. As with

					all performance optimizations, programmers should measure the gains

					on a typical target machine before putting it into production. There are

					more details on expected performance gains in following sections of this

					chapter.

					The cc-NUMA CPU architecture with SIMD units forms the foundation

					of a multicore processor, which can exploit a wide spectrum of parallelism

					starting from instruction-level parallelism in five different ways as shown

					in Figure 16-3.

					�±¶·µ¸¦·¬²±

					¯¨¹¨¯

					�¼³¨µ`

					ꢀꢁꢂ�²µ¨¶ꢃꢂ

					ꢄꢂ¦«¬³

					ꢀꢂ¦«¬³¶ꢃ

					ꢀꢂ¦²°³¸·¨µ¶ꢃ

					ꢄꢂ¦¯¸¶·¨µ

					³¤µ¤¯¯¨¯¬¶° ·«µ¨¤§¬±ª

					ꢄꢂ¦²°³¸·¨µ

					¡¨²±

					�µ²¦¨¶¶²µ

					�»¨¦¸·¨¶

					°¸¯·¬³¯¨

					�¸±ꢂ·º²

					«¤µ§º¤µ¨

					·«µ¨¤§¶

					�¸¯·¬³µ²¦¨¶¶¬±ª

					�¸±ꢂꢀꢁꢂ·«µ¨¤§¶

					º¬·«ꢂ¶«¤µ¨§

					g����hꢂ

					²±`¦«¬³ꢂµ¨¶²¸µ¦¨¶

					¬±¶·µ¸¦·¬²±¶

					²¸·`²©`²µ§¨µ

					�¬¶·µ¬¥¸·¨§ꢂ³µ²¦¨¶¶¬±ª

					�²µ¨ꢂ³¤µ¤¯¯¨¯¬¶°

					�¨¶¶ꢂ³¤µ¤¯¯¨¯¬¶°

					Figure 16-3. Five ways for executing instructions in parallel

					393

					www. dbooks . or g

					[bookmark: 413_0]
				

			

		

		
			
				
					Chapter 16 programming for CpUs

					In Figure 16-3, instruction-level parallelism can be achieved through

					both out-of-order execution of scalar instructions and SIMD (Single

					Instruction, Multiple Data) data parallelism within a single thread. Thread-

					level parallelism can be achieved through executing multiple threads on

					the same core or on multiple cores at different scales. More specifically,

					thread-level parallelism can be exposed from the following:

					•

					Modern CPU architectures allow one core to execute

					the instructions of two or more threads simultaneously.

					•

					Multicore architectures that contain two or more brains

					within each processor. The operating system perceives

					each of its execution cores as a discrete processor, with

					all of the associated execution resources.

					•

					Multiprocessing at the processor (chip) level, which

					can be accomplished by executing completely separate

					threads of code. As a result, the processor can have

					one thread running from an application and another

					thread running from an operating system, or it can

					have parallel threads running from within a single

					application.

					•

					Distributed processing, which can be accomplished by

					executing processes consisting of multiple threads on

					a cluster of computers, which typically communicate

					through message passing frameworks.

					In order to fully utilize a multicore processor resource, the software

					must be written in a way that spreads its workload across multiple cores.

					This approach is called exploiting thread-level parallelism or simply

					threading.

					As multiprocessor computers and processors with hyper-threading

					(HT) technology and multicore technology become more and more

					common, it is important to use parallel processing techniques as standard

					394

				

			

		

		
			
				
					
				
			

			
				
					Chapter 16 programming for CpUs

					practice to increase performance. Later sections of this chapter will

					introduce the coding methods and performance-tuning techniques within

					DPC++ that allow us to achieve peak performance on multicore CPUs.

					Like other parallel processing hardware (e.g., GPUs), it is important

					to give the CPU a sufficiently large set of data elements to process. To

					demonstrate the importance of exploiting multilevel parallelism to handle

					a large set of data, consider a simple C++ STREAM Triad program, as

					shown in Figure 16-4.

					A NOTE ABOUT STREAM TRIAD WORKLOAD

					the stream triad workload (www.cs.virginia.edu/stream) is an

					important and popular benchmark workload that CpU vendors use to

					demonstrate highly tuned performance. We use the stream triad kernel

					to demonstrate code generation of a parallel kernel and the way that it

					is scheduled to achieve significantly improved performance through the

					techniques described in this chapter. the stream triad is a relatively

					simple workload, but is sufficient to show many of the optimizations in an

					understandable way.

					USE VENDOR-PROVIDED LIBRARIES!

					When a vendor provides a library implementation of a function, it is almost

					always beneficial to use it rather than re-implementing the function as a

					parallel kernel!

					395

					www. dbooks . or g

				

			

		

		
			
				
					Chapter 16 programming for CpUs

					// C++ STREAM Triad workload

					// __restrict is used to denote no memory aliasing among arguments

					template <typename T>

					double triad(T* __restrict VA, T* __restrict VB,

					T* __restrict VC, size_t array_size, const T scalar) {

					double ts = timer_start()

					for (size_t id = 0; id < array_size; id++) {

					VC[id] = VA[id] + scalar * VB[id];

					}

					double te = timer_end();

					return (te – ts);

					}

					Figure 16-4. STREAM Triad C++ loop

					The STREAM Triad loop may be trivially executed on a CPU using a

					single CPU core for serial execution. A good C++ compiler will perform

					loop vectorization to generate SIMD code for the CPU that has SIMD

					hardware to exploit instruction-level SIMD parallelism. For example, for

					an Intel Xeon processor with AVX-512 support, the Intel C++ compiler

					generates SIMD code as shown in Figure 16-5. Critically, the compiler’s

					transformation of the code reduced the number of loop iterations at

					execution time, by doing more work (SIMD width and also unrolled

					iterations) per loop iteration at runtime!

					396

					[bookmark: 416_0]
				

			

		

		
			
				
					Chapter 16 programming for CpUs

					// STREAM Triad: SIMD code generated by the compiler, where zmm0, zmm1

					// and zmm2 are SIMD vector registers. The vectorized loop is unrolled by 4

					// to leverage the out-of-execution of instructions from Xeon CPU and to

					// hide memory load and store latency

					# %bb.0:

					# %entry

					vbroadcastsd

					%xmm0, %zmm0

					4, 0x90

					# broadcast “scalar” to SIMD reg zmm0

					movq

					$-32, %rax

					.p2align

					.LBB0_1:

					# %loop.19

					# =>This Loop Header: Depth=1

					vmovupd 256(%rdx,%rax,8), %zmm1 # load 8 elements from memory to zmm1

					vfmadd213pd

					256(%rsi,%rax,8), %zmm0, %zmm1 # zmm1=(zmm0*zmm1)+mem

					# perform SIMD FMA for 8 data elements

					# VC[id:8] = scalar*VB[id:8]+VA[id:8]

					vmovupd %zmm1, 256(%rdi,%rax,8) # store 8-element result to mem from zmm1

					# This SIMD loop body is unrolled by 4

					vmovupd 320(%rdx,%rax,8), %zmm1

					vfmadd213pd

					320(%rsi,%rax,8), %zmm0, %zmm1 # zmm1=(zmm0*zmm1)+mem

					vmovupd %zmm1, 320(%rdi,%rax,8)

					vmovupd 384(%rdx,%rax,8), %zmm1

					vfmadd213pd

					384(%rsi,%rax,8), %zmm0, %zmm1 # zmm1=(zmm0*zmm1)+mem

					vmovupd %zmm1, 384(%rdi,%rax,8)

					vmovupd 448(%rdx,%rax,8), %zmm1

					vfmadd213pd

					448(%rsi,%rax,8), %zmm0, %zmm1 # zmm1=(zmm0*zmm1)+mem

					vmovupd %zmm1, 448(%rdi,%rax,8)

					addq

					cmpq

					jb

					$32, %rax

					$134217696, %rax

					.LBB0_1

					# imm = 0x7FFFFE0

					Figure 16-5. AVX-512 code for STREAM Triad C++ loop

					As shown in Figure 16-5, the compiler was able to exploit instruction-

					level parallelism in two ways. First is through the use of SIMD instructions,

					exploiting instruction-level data parallelism, in which a single instruction

					can process eight double-precision data elements simultaneously in

					parallel (per instruction). Second, the compiler applied loop unrolling

					to get the out-of-order execution effect of these instructions that have no

					dependences between them, based on hardware multiway instruction

					scheduling.

					397

					www. dbooks . or g

					[bookmark: 417_0]
				

			

		

		
			
				
					Chapter 16 programming for CpUs

					If we try to execute this function on a CPU, it will probably run well—

					not great, though, since it does not utilize any multicore or threading

					capabilities of the CPU, but good enough for a small array size. If we try to

					execute this function with a large array size on a CPU, however, it will likely

					perform very poorly because the single thread will only utilize a single CPU

					core and will be bottlenecked when it saturates the memory bandwidth of

					that core.

					Exploiting Thread-Level Parallelism

					To improve the performance of the STREAM Triad kernel for both CPUs

					and GPUs, we can compute on a range of data elements that can be

					processed in parallel, by converting the loop to a parallel_forkernel.

					A STREAM Triad kernel may be trivially executed on a CPU by

					submitting it into a queue for a parallel execution. The body of this

					STREAM Triad DPC++ parallel kernel looks exactly like the body of the

					STREAM Triad loop that executes in serial C++ on the CPU, as shown in

					Figure 16-6.

					398

					[bookmark: 418_0]
				

			

		

		
			
				
					Chapter 16 programming for CpUs

					constexpr int num_runs = 10;

					constexpr size_t scalar = 3;

					double triad(

					const std::vector<double>& vecA,

					const std::vector<double>& vecB,

					std::vector<double>& vecC) {

					assert(vecA.size() == vecB.size() == vecC.size());

					const size_t array_size = vecA.size();

					double min_time_ns = DBL_MAX;

					queue Q{ property::queue::enable_profiling{} };

					std::cout << "Running on device: " <<

					Q.get_device().get_info<info::device::name>() << "\n";

					buffer<double> bufA(vecA);

					buffer<double> bufB(vecB);

					buffer<double> bufC(vecC);

					for (int i = 0; i< num_runs; i++) {

					auto Q_event = Q.submit([&](handler& h) {

					accessor A{ bufA, h };

					accessor B{ bufB, h };

					accessor C{ bufC, h };

					h.parallel_for(array_size, [=](id<1> idx) {

					C[idx] = A[idx] + B[idx] * scalar;

					});

					});

					double exec_time_ns =

					Q_event.get_profiling_info<info::event_profiling::command_end>() -

					Q_event.get_profiling_info<info::event_profiling::command_start>();

					std::cout << "Execution time (iteration " << i << ") [sec]: "

					<< (double)exec_time_ns * 1.0E-9 << "\n";

					min_time_ns = std::min(min_time_ns, exec_time_ns);

					}

					return min_time_ns;

					}

					Figure 16-6. DPC++ STREAM Triad parallel_forkernel code

					399

					www. dbooks . or g

					[bookmark: 419_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 16 programming for CpUs

					Even though the parallel kernel is very similar to the STREAM Triad

					function written as serial C++ with a loop, it runs much faster on a CPU

					because the parallel_forenables different elements of the array to be

					processed on multiple cores in parallel. As shown in Figure 16-7, assume

					that we have a system with one socket, four cores, and two hyper-threads

					per core; there are 1024 double-precision data elements to be processed;

					and in the implementation, data is processed in work-groups containing

					32 data elements each. This means that we have 8 threads and 32 work-

					groups. The work-group scheduling can be done in a round-robin order,

					that is, thread-id = work-group-id mod 8. Essentially, each thread will

					execute four work-groups. Eight work-groups can be executed in parallel

					for each round. Note that, in this case, the work-group is a set of work-

					items that is implicitly formed by the DPC++ compiler and runtime.

					º²µ®`ªµ²¸³ꢀꢁꢀIꢀgꢁꢌꢀꢄꢂh

					ꢀꢋꢋꢋꢀꢀꢋꢋꢋꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢄꢁꢀꢄꢂ

					º¬ꢀIꢀꢀꢁꢀꢀꢀꢂꢀꢀꢀꢃꢀꢀꢀꢄꢀꢀꢀꢅꢀꢀꢀꢆꢀꢀꢀꢇꢀꢀꢀꢈꢀꢀꢀꢀꢀꢀꢉꢀꢀꢀꢊꢀꢀꢂꢁꢀꢀꢂꢂꢀꢂꢃꢀꢂꢄꢀ ꢂꢅꢀꢂꢆ

					ꢋꢋꢋꢀꢋꢋꢋꢀꢀ

					�«µ¨¤§`ꢁ

					º²µ®`ªµ²¸³ꢀꢉꢀIꢀgꢁꢂꢊꢀꢈꢁh

					ꢀꢃꢃꢃꢀꢀꢃꢃꢃꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢈꢂꢀꢈꢁ

					º¬ꢀIꢀꢁꢂꢀꢀꢀꢀꢀꢀꢀꢃꢃꢃꢀ ꢃꢃꢃꢀꢀꢃꢃꢃꢀꢀꢃꢃꢃꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢁꢄꢀꢅꢆꢀꢀꢀꢀꢀꢀꢀꢃꢃꢃꢀ ꢃꢃꢃꢀꢀꢃꢃꢃꢀꢀꢃꢃꢃꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢅꢇ

					ꢃꢃꢃꢀꢃꢃꢃꢀꢀ

					�«µ¨¤§`ꢉ

					ꢋꢋꢋꢀꢋꢋꢋꢀꢀ

					ꢋꢋꢋꢀꢋꢋꢋꢀꢀ

					ꢋꢋꢋꢀꢋꢋꢋꢀꢀ

					º²µ®`ªµ²¸³ꢀ�ꢀIꢀgꢃꢃꢊꢀꢃꢃh

					ꢃꢃꢃꢀꢃꢃꢃꢀꢀ

					�«µ¨¤§`�

					Figure 16-7. A mapping of a STREAM Triad parallel kernel

					Note that in the DPC++ program, the exact way that data elements are

					partitioned and assigned to different processor cores (or hyper-threads) is

					not required to be specified. This gives a DPC++ implementation flexibility

					to choose how best to execute a parallel kernel on a specific CPU. With that

					said, an implementation can provide some level of control to programmers

					to enable performance tuning.

					400

					[bookmark: 420_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 16 programming for CpUs

					While a CPU may impose a relatively high thread context switch and

					synchronization overhead, having somewhat more software threads

					resident on a processor core is beneficial because it gives each processor

					core a choice of work to execute. If one software thread is waiting for

					another thread to produce data, the processor core can switch to a

					different software thread that is ready to run without leaving the processor

					core idle.

					CHOOSING HOW TO BIND AND SCHEDULE THREADS

					Choosing an effective scheme to partition and schedule the work among

					threads is important to tune an application on CpUs and other device types.

					subsequent sections will describe some of the techniques.

					Thread Affinity Insight

					Thread affinity designates the CPU cores on which specific threads

					execute. Performance can suffer if a thread moves around among cores,

					for instance, if threads do not execute on the same core, cache locality can

					become an inefficiency if data ping-pongs between different cores.

					The DPC++ runtime library supports several schemes for binding

					threads to core(s) through environment variables DPCPP_CPU_CU_

					AFFINITY, DPCPP_CPU_PLACES, DPCPP_CPU_NUM_CUS, and DPCPP_

					CPU_SCHEDULE, which are not defined by SYCL.

					The first of these is the environment variable DPCPP_CPU_CU_AFFINITY.

					Tuning using these environment variable controls is simple and low cost

					and can have large impact for many applications. The description of this

					environment variable is shown in Figure 16-8.

					401

					www. dbooks . or g

					[bookmark: 421_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 16 programming for CpUs

					Figure 16-8. DPCPP_CPU_CU_AFFINITYenvironment variable

					When the environment variable DPCPP_CPU_CU_AFFINITYis specified, a

					software thread is bound to a hyper-thread through the following formula:

					spread :boundHT = tid mod numHT + tid mod numSocket ´ numHT

) (

					(

)

					close :boundHT = tid mod numSocket ´ numHT

					(

)

					where

					• tiddenotes a software thread identifier.

					• boundHTdenotes a hyper-thread (logical core) that

					thread tidis bound to.

					• numHTdenotes the number of hyper-threads per socket.

					• numSocketdenotes the number of sockets in the

					system.

					Assume that we run a program with eight threads on a dual-core

					dual-socket hyper-threading system—in other words, we have four cores

					for a total of eight hyper-threads to program. Figure 16-9 shows examples

					of how threads can map to the hyper-threads and cores for different

					DPCPP_CPU_CU_AFFINITYsettings.

					402

					[bookmark: 422_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 16 programming for CpUs

					Figure 16-9. Mapping threads to cores with hyper-threads

					In conjunction with the environment variable DPCPP_CPU_CU_

					AFFINITY, there are other environment variables that support CPU

					performance tuning:

					•

					DPCPP_CPU_NUM_CUS = [n], which sets the number

					of threads used for kernel execution. Its default value is

					the number of hardware threads in the system.

					•

					DPCPP_CPU_PLACES = [sockets| numa_domains|

					cores| threads], which specifies the places that the

					affinity will be set similar to OMP_PLACESin OpenMP

					5.1. The default setting is cores.

					•

					DPCPP_CPU_SCHEDULE = [dynamic| affinity|

					static], which specifies the algorithm for scheduling

					work-groups. Its default setting is dynamic.

					•

					dynamic: Enable the TBB auto_partitioner,

					which usually performs sufficient splitting to

					balance the load among worker threads.

					•

					affinity: Enable the TBB affinity_partitioner,

					which improves cache affinity and uses

					proportional splitting when mapping subranges to

					worker threads.

					403

					www. dbooks . or g

					[bookmark: 423_0]
				

			

		

		
			
				
					Chapter 16 programming for CpUs

					•

					static: Enable the TBB static_partitioner, which

					distributes iterations among worker threads as

					uniformly as possible.

					The TBB partitioner uses a grain size to control work splitting, with a

					default grain size of 1 which indicates that all work-groups can be executed

					independently. More information can be found at spec.oneapi.com/

					versions/latest/elements/oneTBB/source/algorithms.html#partitioners.

					A lack of thread affinity tuning does not necessarily mean lower

					performance. Performance often depends more on how many total

					threads are executing in parallel than on how well the thread and data

					are related and bound. Testing the application using benchmarks is one

					way to be certain whether the thread affinity has a performance impact

					or not. The DPC++ STREAM Triad code, as shown in Figure 16-1, started

					with a lower performance without thread affinity settings. By controlling

					the affinity setting and using static scheduling of software threads through

					the environment variables (exports shown in the following for Linux),

					performance improved:

					export DPCPP_CPU_PLACES=numa_domains

					export DPCPP_CPU_CU_AFFINITY=close

					By using numa_domainsas the places setting for affinity, the TBB task

					arenas are bound to NUMA nodes or sockets, and the work is uniformly

					distributed across task arenas. In general, the environment variable

					DPCPP_CPU_PLACESis recommended to be used together with DPCPP_CPU_

					CU_AFFINITY. These environment variable settings help us to achieve a

					~30% performance gain on a Skylake server system with 2 sockets and 28

					two-way hyper-threading cores per socket, running at 2.5 GHz. However,

					we can still do better to further improve the performance on this CPU.

					404

				

			

		

		
			
				
					Chapter 16 programming for CpUs

					Be Mindful of First Touch to Memory

					Memory is stored where it is first touched (used). Since the initialization

					loop in our example is not parallelized, it is executed by the host thread

					in serial, resulting in all the memory being associated with the socket

					that the host thread is running on. Subsequent access by other sockets

					will then access data from memory attached to the initial socket (used for

					the initialization), which is clearly undesirable for performance. We can

					achieve a higher performance on the STREAM Triad kernel by parallelizing

					the initialization loop to control the first touch effect across sockets, as

					shown in Figure 16-10.

					template <typename T>

					void init(queue &deviceQueue, T* VA, T* VB, T* VC, size_t array_size) {

					range<1> numOfItems{array_size};

					buffer<T, 1> bufferA(VA, numOfItems);

					buffer<T, 1> bufferB(VB, numOfItems);

					buffer<T, 1> bufferC(VC, numOfItems);

					auto queue_event = deviceQueue.submit([&](handler& cgh) {

					auto aA = bufA.template get_access<sycl_write>(cgh);

					auto aB = bufB.template get_access<sycl_write>(cgh);

					auto aC = bufC.template get_access<sycl_write>(cgh);

					cgh.parallel_for<class Init<T>>(numOfItems, [=](id<1> wi) {

					aA[wi] = 2.0; aB[wi] = 1.0; aC[wi] = 0.0;

					});

					});

					queue_event.wait();

					}

					Figure 16-10. STREAM Triad parallel initialization kernel to control

					first touch effects

					405

					www. dbooks . or g

					[bookmark: 425_0]
					[bookmark: 425_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 16 programming for CpUs

					Exploiting parallelism in the initialization code improves performance

					of the kernel when run on a CPU. In this instance, we achieve a ~2x

					performance gain on an Intel Xeon processor system.

					The recent sections of this chapter have shown that by exploiting

					thread-level parallelism, we can utilize CPU cores and hyper-threads

					effectively. However, we need to exploit the SIMD vector-level parallelism

					in the CPU core hardware as well, to achieve peak performance.

					DpC++ parallel kernels benefit from thread-level parallelism across

					cores and hyper-threads!

					SIMD Vectorization on CPU

					While a well-written DPC++ kernel without cross-work-item dependences

					can run in parallel effectively on a CPU, we can also apply vectorization

					to DPC++ kernels to leverage SIMD hardware, similarly to the GPU

					support described in Chapter 15. Essentially, CPU processors may

					optimize memory loads, stores, and operations using SIMD instructions

					by leveraging the fact that most data elements are often in contiguous

					memory and take the same control flow paths through a data-parallel

					kernel. For example, in a kernel with a statement a[i] = a[i] + b[i],

					each data element executes with same instruction stream load, load,

					add, and store by sharing hardware logic among multiple data elements

					and executing them as a group, which may be mapped naturally onto a

					hardware’s SIMD instruction set. Specifically, multiple data elements can

					be processed simultaneously by a single instruction.

					The number of data elements that are processed simultaneously by a

					single instruction is sometimes referred to as the vector length (or SIMD

					width) of the instruction or processor executing it. In Figure 16-11, our

					instruction stream runs with four-way SIMD execution.

					406

					[bookmark: 426_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 16 programming for CpUs

					Figure 16-11. Instruction stream for SIMD execution

					CPU processors are not the only processors that implement SIMD

					instruction sets. Other processors such as GPUs implement SIMD

					instructions to improve efficiency when processing large sets of data. A key

					difference with Intel Xeon CPU processors, compared with other processor

					types, is having three fixed-size SIMD register widths 128-bit XMM, 256-bit

					YMM, and 512-bit ZMM instead of a variable length of SIMD width. When

					we write DPC++ code with SIMD parallelism using sub-group or vector

					types, we need to be mindful of SIMD width and the number of SIMD

					vector registers in the hardware.

					Ensure SIMD Execution Legality

					Semantically, the DPC++ execution model ensures that SIMD execution

					can be applied to any kernel, and a set of work-items in each work-group

					(i.e., a sub-group) may be executed concurrently using SIMD instructions.

					Some implementations may instead choose to execute loops within a

					kernel using SIMD instructions, but this is possible if and only if all original

					data dependences are preserved, or data dependences are resolved by the

					compiler based on privatization and reduction semantics.

					A single DPC++ kernel execution can be transformed from processing

					of a single work-item to a set of work-items using SIMD instructions

					within the work-group. Under the ND-range model, the fastest-growing

					(unit-stride) dimension is selected by the compiler vectorizer on which to

					generate SIMD code. Essentially, to enable vectorization given an ND-

					range, there should be no cross-work-item dependences between any

					two work-items in the same sub-group, or the compiler needs to preserve

					cross-work-item forward dependences in the same sub-group.

					407

					www. dbooks . or g

					[bookmark: 427_0]
					[bookmark: 427_1]
				

			

		

		
			
				
					Chapter 16 programming for CpUs

					When the kernel execution of work-items is mapped to threads on

					CPUs, fine-grained synchronization is known to be costly, and the thread

					context switch overhead is high as well. It is therefore an important

					performance optimization to eliminate dependences between work-items

					within a work-group when writing a DPC++ kernel for CPUs. Another

					effective approach is to restrict such dependences to the work-items within

					a sub-group, as shown for the read-before-write dependence in Figure 16-12.

					If the sub-group is executed under a SIMD execution model, the sub-group

					barrier in the kernel can be treated by the compiler as a no-op, and no real

					synchronization cost is incurred at runtime.

					using namespace sycl::intel;

					queue Q;

					range<2> G = {n, w};

					range<2> L = {1, w};

					int *a = malloc_shared<int>(n*(n+1), Q);

					for (int i = 0; i < n; i++)

					for (int j = 0; j < n+1; j++) a[i*n + j] = i + j;

					Q.parallel_for(nd_range<2>{G, L}, [=](nd_item<2> it)

					[[cl::intel_reqd_sub_group_size(w)]] {

					// distribute uniform "i" over the sub-group with 8-way

					// redundant computation

					const int i = it.get_global_id(0);

					sub_group sg = it.get_sub_group();

					for (int j = sg.get_local_id()[0]; j < n; j += w) {

					// load a[i*n+j+1:8] before updating a[i*n+j:8] to preserve

					// loop-carried forward dependence

					auto va = a[i*n + j + 1];

					sg.barrier();

					a[i*n + j] = va + i + 2;

					}

					sg.barrier();

					}).wait();

					Figure 16-12. Using a sub-group to vectorize a loop with a forward

					dependence

					408

					[bookmark: 428_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 16 programming for CpUs

					The kernel is vectorized (with a vector length of 8), and its SIMD

					execution is shown in Figure 16-13. A work-group is formed with a group

					size of (1, 8), and the loop iterations inside the kernel are distributed

					over these sub-group work-items and executed with eight-way SIMD

					parallelism.

					In this example, if the loop in the kernel dominates the performance,

					allowing SIMD vectorization across the sub-group will result in a

					significant performance improvement.

					The use of SIMD instructions that process data elements in parallel is

					one way to let the performance of the kernel scale beyond the number of

					CPU cores and hyper-threads.

					work-group(0, [0:7])

					sub-group = [0, 7]

					work-group(1, [0:7])

					sub-group = [0, 7]

					work-group(2, [0:7])

					sub-group = [0, 7]

				

				

					I=0, J= 0

					1

					2

					3

					4

					5

					6

					7

					I=0, J= 0

					1

					2

					3

					4

					5

					6

					7

					I=0, J= 0

					1

					2

					3

					4

					5

					6

					7

					I=0, J= 8 9 10 11 12 13 14 15

					I=0, J=16 23

					I=0, J=24 31

					I=0, J= 8 9 10 11 12 13 14 15

					I=0, J=16 23

					I=0, J=24 31

					I=0, J= 8 9 10 11 12 13 14 15

					I=0, J=16 23

					I=0, J=24 31

				

				

				

				

				

				

				

					HT Thread

					HT Thread

					HT Thread

					Figure 16-13. SIMD vectorization for a loop with a forward

					dependence

					SIMD Masking and Cost

					In real applications, we can expect conditional statements such as an if

					statement, conditional expressions such as a = b > a? a: b, loops with

					a variable number of iterations, switchstatements, and so on. Anything

					that is conditional may lead to scalar control flows not executing the same

					code paths and, just like on a GPU (Chapter 15), can lead to decreased

					409

					www. dbooks . or g

					[bookmark: 429_0]
					[bookmark: 429_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 16 programming for CpUs

					performance. A SIMD mask is a set of bits with the value 1or 0, which is

					generated from conditional statements in a kernel. Consider an example

					with A={1, 2, 3, 4}, B={3, 7, 8, 1}, and the comparison expression

					a < b.The comparison returns a mask with four values {1, 1, 1, 0}that

					can be stored in a hardware mask register, to dictate which lanes of later

					SIMD instructions should execute the code that was guarded (enabled) by

					the comparison.

					If a kernel contains conditional code, it is vectorized with masked

					instructions that are executed based on the mask bits associated with each

					data element (lane in the SIMD instruction). The mask bit for each data

					element is the corresponding bit in a mask register.

					Using masking may result in lower performance than corresponding

					non-masked code. This may be caused by

					•

					•

					An additional mask blend operation on each load

					Dependence on the destination

					Masking has a cost, so use it only when necessary. When a kernel is an

					ND-range kernel with explicit groupings of work-items in the execution

					range, care should be taken when choosing an ND-range work-group size

					to maximize SIMD efficiency by minimizing masking cost. When a work-

					group size is not evenly divisible by a processor’s SIMD width, part of the

					work-group may execute with masking for the kernel.

					Figure 16-14. Three masking code generations for masking in kernel

					410

					[bookmark: 430_0]
				

			

		

		
			
				
					Chapter 16 programming for CpUs

					Figure 16-14 shows how using merge masking creates a dependence

					on the destination register:

					•

					With no masking, the processor executes two multiplies

					(vmulps) per cycle.

					•

					With merge masking, the processor executes two

					multiplies every four cycles as the multiply instruction

					(vmulps) preserves results in the destination register as

					shown in Figure 16-17.

					•

					Zero masking doesn’t have a dependence on the

					destination register and therefore can execute two

					multiplies (vmulps) per cycle.

					Accessing cache-aligned data gives better performance than accessing

					non-aligned data. In many cases, the address is not known at compile time

					or is known and not aligned. In these cases, a peeling on memory accesses

					may be implemented, to process the first few elements using masked

					accesses, up to the first aligned address, and then to process unmasked

					accesses followed by a masked remainder, through multiversioning

					techniques in the parallel kernel. This method increases code size, but

					improves data processing overall.

					Avoid Array-of-Struct for SIMD Efficiency

					AOS (Array-of-Struct) structures lead to gathers and scatters, which

					can both impact SIMD efficiency and introduce extra bandwidth and

					latency for memory accesses. The presence of a hardware gather-scatter

					mechanism does not eliminate the need for this transformation—gather-

					scatter accesses commonly need significantly higher bandwidth and

					latency than contiguous loads. Given an AOS data layout of struct {float

					x; float y; float z; float w;} a[4],consider a kernel operating on

					it as shown in Figure 16-15.

					411

					www. dbooks . or g

					[bookmark: 431_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 16 programming for CpUs

					cgh.parallel_for<class aos<T>>(numOfItems,[=](id<1> wi) {

					x[wi] = a[wi].x; // lead to gather x0, x1, x2, x3

					y[wi] = a[wi].y; // lead to gather y0, y1, y2, y3

					z[wi] = a[wi].z; // lead to gather z0, z1, z2, z3

					w[wi] = a[wi].w; // lead to gather w0, w1, w2, w3

					});

					Figure 16-15. SIMD gather in a kernel

					When the compiler vectorizes the kernel along a set of work-items, it

					leads to SIMD gather instruction generation due to the need for non-unit-

					stride memory accesses. For example, the stride of a[0].x, a[1].x, a[2].x

					and a[3].xis 4, not a more efficient unit-stride of 1.

					In a kernel, we can often achieve a higher SIMD efficiency by

					eliminating the use of memory gather-scatter operations. Some code

					benefits from a data layout change that converts data structures written

					in an Array-of-Struct (AOS) representation to a Structure of Arrays (SOA)

					representation, that is, having separate arrays for each structure field to

					keep memory accesses contiguous when SIMD vectorization is performed.

					For example, consider a SOA data layout of struct {float x[4]; float

					y[4]; float z[4]; float w[4];} a;as shown here:

					A kernel can operate on the data with unit-stride (contiguous) vector

					loads and stores as shown in Figure 16-16, even when vectorized!

					412

					[bookmark: 432_0]
				

			

		

		
			
				
					Chapter 16 programming for CpUs

					cgh.parallel_for<class aos<T>>(numOfItems,[=](id<1> wi) {

					x[wi] = a.x[wi]; // lead to unit-stride vector load x[0:4]

					y[wi] = a.y[wi]; // lead to unit-stride vector load y[0:4]

					z[wi] = a.z[wi]; // lead to unit-stride vector load z[0:4]

					w[wi] = a.w[wi]; // lead to unit-stride vector load w[0:4]

					});

					Figure 16-16. SIMD unit-stride vector load in a kernel

					The SOA data layout helps prevent gathers when accessing one field of

					the structure across the array elements and helps the compiler to vectorize

					kernels over the contiguous array elements associated with work-items.

					Note that such AOS-to-SOA or AOSOA data layout transformations are

					expected to be done at the program level (by us) considering all the

					places where those data structures are used. Doing it at just a loop level

					will involve costly transformations between the formats before and

					after the loop. However, we may also rely on the compiler to perform

					vector-load-and-shuffle optimizations for AOS data layouts with some

					cost. When a member of SOA (or AOS) data layout has a vector type, the

					compiler vectorization will perform either horizontal expansion or vertical

					expansion as described in Chapter 11 based on underlying hardware to

					generate optimal code.

					Data Type Impact on SIMD Efficiency

					C++ programmers often use integer data types whenever they know that

					the data fits into a 32-bit signed type, often leading to code such as

					int id = get_global_id(0); a[id] = b[id] + c[id];

					However, given that the return type of the get_global_id(0)is size_t

					(unsigned integer, often 64-bit), in some cases, the conversion reduces the

					optimization that a compiler can legally perform. This can then lead to

					SIMD gather/scatter instructions when the compiler vectorizes the code in

					the kernel, for example

					413

					www. dbooks . or g

					[bookmark: 433_0]
					[bookmark: 433_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 16 programming for CpUs

					•

					•

					Read of a[get_global_id(0)]leads to a SIMD unit-

					stride vector load.

					Read of a[(int)get_global_id(0)]leads to a non-

					unit-stride gather instruction.

					This nuanced situation is introduced by the wraparound behavior

					(unspecified behavior and/or well-defined wraparound behavior in C++

					standards) of data type conversion from size_tto int(or uint), which

					is mostly a historical artifact from the evolution of C-based languages.

					Specifically, overflow across some conversions is undefined behavior,

					which actually allows the compiler to assume that such conditions never

					happen and to optimize more aggressively. Figure 16-17 shows some

					examples for those wanting to understand the details.

					get_global_id(0)

					a[(int)get_global_id(0)]

					a[MAX_INT-1]

					get_globalid(0)

					0xFFFFFFFE

					a((uint)get_global_id(0)]

					a[MAX_UINT-1]

					a[MAX_INT (big positive)]

					a[MIN_INT (big negative)]

					0xFFFFFFFF

					a[MAX_UINT]

					a[0]

					0x100000000

					a[MIN_INT+1]

					Ox100000001

					a[1]

					Figure 16-17. Examples of integer type valuewraparound

					SIMD gather/scatter instructions are slower than SIMD unit-stride

					vector load/store operations. In order to achieve an optimal SIMD

					efficiency, avoiding gathers/scatters can be critical for an application

					regardless of which programming language is used.

					Most SYCL get_*_id()family functions have the same detail, although

					many cases fit within MAX_INTbecause the possible return values are

					bounded (e.g., the maximum id within a work-group). Thus, whenever legal,

					the DPC++ compiler will assume unit-stride memory addresses across the

					414

					[bookmark: 434_0]
				

			

		

		
			
				
					Chapter 16 programming for CpUs

					chunk of neighboring work-items to avoid gather/scatters. For cases that

					the compiler can’t safely generate linear unit-stride vector memory loads/

					stores because of possible overflow from the value of global IDs and/

					or derivative value from global IDs, the compiler will generate gathers/

					scatters.

					Under the philosophy of delivering optimal performance for users,

					the DPC++ compiler assumes no overflow, and captures the realty almost

					all of the time in practice, so the compiler can generate optimal SIMD

					code to achieve good performance. However, an overriding compiler

					macro—D__SYCL_DISABLE_ID_TO_INT_CONV__—is provided by the

					DPC++ compiler for us to tell the compiler that there will be an overflow

					and that vectorized accesses derived from the id queries may not be safe.

					This can have large performance impact and should be used whenever

					unsafe to assume no overflow.

					SIMD Execution Using single_task

					Under a single task execution model, optimizations related to the vector

					types and functions depend on the compiler. The compiler and runtime

					are given a freedom either to enable explicit SIMD execution or to choose

					scalar execution within the single_taskkernel, and the result will

					depend on the compiler implementation. For instance, the DPC++ CPU

					compiler honors vector types and generates SIMD instructions for CPU

					SIMD execution. The vecload, store, and swizzle function will perform

					operations directly on vector variables, informing the compiler that data

					elements are accessing contiguous data starting from the same (uniform)

					location in memory and enabling us to request optimized loads/stores of

					contiguous data.

					415

					www. dbooks . or g

					[bookmark: 435_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 16 programming for CpUs

					TXHXH 4ꢀ

					ERRO ꢁUHV$UUD\ꢂ ꢂPDOORFBVKDUHGꢃERRO!ꢄꢅꢆꢂ4ꢇꢀ

					UHV$UUD\>ꢈ@ꢂ ꢂWUXHꢀ

					4ꢉVLQJOHBWDVNꢄ> @ꢄꢇꢂ^

					V\FOꢊꢊYHFꢃLQWꢆꢂꢋ!ꢂROGBYꢂ ꢂV\FOꢊꢊYHFꢃLQWꢆꢂꢋ!ꢄꢈꢈꢈꢆꢂꢅꢈꢈꢆꢂꢌꢈꢈꢆꢂꢍꢈꢈꢇꢀ

					V\FOꢊꢊYHFꢃLQWꢆꢂꢋ!ꢂQHZBYꢂ ꢂV\FOꢊꢊYHFꢃLQWꢆꢂꢋ!ꢄꢇꢀ

					QHZBYꢉUJEDꢄꢇꢂ ꢂROGBYꢉDEJUꢄꢇꢀ

					LQW YDOV>@ꢂ ꢂ^ꢍꢈꢈꢆꢂꢌꢈꢈꢆꢂꢅꢈꢈꢆꢂꢈꢈꢈ`ꢀ

					LI ꢄQHZBYꢉUꢄꢇꢂꢎ ꢂYDOV>ꢈ@ꢂ__ꢂQHZBYꢉJꢄꢇꢂꢎ ꢂYDOV>ꢅ@ꢂ__

					QHZBYꢉEꢄꢇꢂꢎ ꢂYDOV>ꢌ@ꢂ__ꢂQHZBYꢉDꢄꢇꢂꢎ ꢂYDOV>ꢍ@ꢇꢂ^

					UHV$UUD\>ꢈ@ꢂ ꢂIDOVHꢀ

					`

					`ꢇ ꢉZDLWꢄꢇꢀ

					Figure 16-18. Using vector types and swizzle operations in the

					single_taskkernel

					In the example as shown in Figure 16-18, under single task execution,

					a vector with three data elements is declared. A swizzle operation is

					performed with old_v.abgr().If a CPU provides SIMD hardware

					instructions for some swizzle operations, we may achieve some

					performance benefits of using swizzle operations in applications.

					SIMD VECTORIZATION GUIDELINES

					CpU processors implement simD instruction sets with different simD widths.

					in many cases, this is an implementation detail and is transparent to the

					application executing kernels on the CpU, as the compiler can determine an

					efficient group of data elements to process with a specific simD size rather

					than requiring us to use the simD instructions explicitly. sub-groups may be

					416

					[bookmark: 436_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 16 programming for CpUs

					used to more directly express cases where the grouping of data elements

					should be subject to simD execution in kernels.

					given computational complexity, selecting the code and data layouts that are

					most amenable to vectorization may ultimately result in higher performance.

					While selecting data structures, try to choose a data layout, alignment, and

					data width such that the most frequently executed calculation can access

					memory in a simD-friendly manner with maximum parallelism, as described in

					this chapter.

					Summary

					To get the most out of thread-level parallelism and SIMD vector-level

					parallelism on CPUs, we need to keep the following goals in mind:

					•

					•

					Be familiar with all types of DPC++ parallelism and the

					underlying CPU architectures we wish to target.

					Exploit the right amount of parallelism, not more and

					not less, at a thread level that best matches hardware

					resources. Use vendor tooling, such as analyzers and

					profilers, to help guide our tuning work to achieve this.

					•

					•

					Be mindful of thread affinity and memory first touch

					impact on program performance.

					Design data structures with a data layout, alignment,

					and data width such that the most frequently executed

					calculations can access memory in a SIMD-friendly

					manner with maximum SIMD parallelism.

					•

					Be mindful of balancing the cost of masking vs. code

					branches.

					417

					www. dbooks . or g

					[bookmark: 437_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 16 programming for CpUs

					•

					•

					Use a clear programming style that minimizes potential

					memory aliasing and side effects.

					Be aware of the scalability limitations of using vector

					types and interfaces. If a compiler implementation

					maps them to hardware SIMD instructions, a fixed

					vector size may not match the SIMD width of SIMD

					registers well across multiple generations of CPUs and

					CPUs from different vendors.

					Open Access This chapter is licensed under the terms

					of the Creative Commons Attribution 4.0 International

					License (http://creativecommons.org/licenses/by/4.0/), which permits

					use, sharing, adaptation, distribution and reproduction in any medium or

					format, as long as you give appropriate credit to the original author(s) and

					the source, provide a link to the Creative Commons license and indicate if

					changes were made.

					The images or other third party material in this chapter are included

					in the chapter’s Creative Commons license, unless indicated otherwise

					in a credit line to the material. If material is not included in the chapter’s

					Creative Commons license and your intended use is not permitted by

					statutory regulation or exceeds the permitted use, you will need to obtain

					permission directly from the copyright holder.

					418

				

			

		

		
			
				
					
				
			

			
				
					CHAPTER 17

					Programming

					for FPGAs

					FPGA

					emulator

					p i p e s

					Kernel-based programming originally became popular as a way to access

					GPUs. Since it has now been generalized across many types of accelerators,

					it is important to understand how our style of programming affects the

					mapping of code to an FPGA as well.

					Field Programmable Gate Arrays (FPGAs) are unfamiliar to the majority

					of software developers, in part because most desktop computers don’t

					include an FPGA alongside the typical CPU and GPU. But FPGAs are worth

					knowing about because they offer advantages in many applications. The same

					questions need to be asked as we would of other accelerators, such as “When

					should I use an FPGA?”, “What parts of my applications should be offloaded to

					FPGA?”, and “How do I write code that performs well on an FPGA?”

					This chapter gives us the knowledge to start answering those

					questions, at least to the point where we can decide whether an FPGA

					is interesting for our applications, and to know which constructs are

					commonly used to achieve performance. This chapter is the launching

					© Intel Corporation 2021

					J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-5574-2_17

					419

					www. dbooks . or g

					[bookmark: 439_0]
					[bookmark: 439_1]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					point from which we can then read vendor documentation to fill in details

					for specific products and toolchains. We begin with an overview of how

					programs can map to spatial architectures such as FPGAs, followed by

					discussion of some properties that make FPGAs a good choice as an

					accelerator, and we finish by introducing the programming constructs

					used to achieve performance.

					The “How to Think About FPGAs” section in this chapter is applicable

					to thinking about any FPGA. SYCL allows vendors to specify devices

					beyond CPUs and GPUs, but does not specifically say how to support

					an FPGA. The specific vendor support for FPGAs is currently unique to

					DPC++, namely, FPGA selectors and pipes. FPGA selectors and pipes are

					the only DPC++ extensions used in this chapter. It is hoped that vendors

					will converge on similar or compatible means of supporting FPGAs, and

					this is encouraged by DPC++ as an open source project.

					Performance Caveats

					As with any processor or accelerator, FPGA devices differ from vendor to

					vendor or even from product generation to product generation; therefore,

					best practices for one device may not be best practices for a different

					device. The advice in this chapter is likely to benefit many FPGA devices,

					both now and in the future, however…

					…to achieve optimal performance for a particular FPGA, always

					consult the vendor’s documentation!

					How to Think About FPGAs

					FPGAs are commonly classified as a spatial architecture. They benefit from

					very different coding styles and forms of parallelism than devices that use

					an Instruction Set Architecture (ISA), including CPUs and GPUs, which are

					420

					[bookmark: 440_0]
					[bookmark: 440_1]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					more familiar to most people. To get started forming an understanding of

					FPGAs, we’ll briefly cover some ideas from ISA-based accelerators, so that

					we can highlight key differences.

					For our purposes, an ISA-based accelerator is one where the device

					can execute many different instructions, one or a few at a time. The

					instructions are usually relatively primitive such as “load from memory at

					address A” or “add the following numbers.” A chain of operations is strung

					together to form a program, and the processor conceptually executes one

					instruction after the other.

					In an ISA-based accelerator, a single region of a chip (or the entire

					chip) executes a different instruction from the program in each clock cycle.

					The instructions execute on a fixed hardware architecture that can run

					different instructions at different times, such as shown in Figure 17-1.

					For example, the memory load unit feeding an addition is probably

					the same memory load unit used to feed a subtraction. Similarly, the

					same arithmetic unit is probably used to execute both the addition and

					subtraction instructions. Hardware on the chip is reused by different

					instructions as the program executes over time.

					Simple SA-based Accelerator

					Program

					Counter

					Memory Load/Store

					MUX

					Instruction

					Fetch/Decode

					MUX

					Registers

					Arithmetic Unit (+,-,*)

					Figure 17-1. Simple ISA-based (temporal) processing: Reuses

					hardware (regions) over time

					421

					www. dbooks . or g

					[bookmark: 441_0]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					Spatial architectures are different. Instead of being based around

					a machine that executes a variety of instructions on shared hardware,

					they start from the opposite perspective. Spatial implementations of a

					program conceptually take the entire program as a whole and lay it down

					at once on the device. Different regions of the device implement different

					instructions in the program. This is in many ways the opposite perspective

					from sharing hardware between instructions over time (e.g., ISA)—in

					spatial architectures, each instruction receives its own dedicated hardware

					that can execute simultaneously (same clock cycle) as the hardware

					implementing the other instructions. Figure 17-2 shows this idea which is

					a spatial implementation of an entire program (a very simple program in

					this example).

					Figure 17-2. Spatial processing: Each operation uses a different

					region of the device

					This description of a spatial implementation of a program is overly

					simplistic, but it captures the idea that in spatial architectures, different

					parts of the program execute on different parts of the device, as opposed to

					being issued over time to a shared set of more general-purpose hardware.

					422

					[bookmark: 442_0]
				

			

		

		
			
				
					ChAPter 17 ProGrAmminG For FPGAs

					With different regions of an FPGA programmed to perform distinct

					operations, some of the hardware typically associated with ISA-based

					accelerators is unnecessary. For example, Figure 17-2 shows that we no

					longer need an instruction fetch or decode unit, program counter, or register

					file. Instead of storing data for future instructions in a register file, spatial

					architectures connect the output of one instruction to the input of the next,

					which is why spatial architectures are often called data flow architectures.

					A few obvious questions arise from the mapping to FPGA that we’ve

					introduced. First, since each instruction in the program occupies some

					percentage of the spatial area of the device, what happens if the program

					requires more than 100% of the area? Some solutions provide resource

					sharing mechanisms to enable larger programs to fit at a performance

					cost, but FPGAs do have the concept of a program fitting. This is both an

					advantage and a disadvantage:

					•

					The benefit: If a program uses most of the area on

					the FPGA and there is sufficient work to keep all of

					the hardware busy every clock cycle, then executing

					a program on the device can be incredibly efficient

					because of the extreme parallelism. More general

					architectures may have significant unused hardware

					per clock cycle, whereas with an FPGA, the use of

					area can be perfectly tailored to a specific application

					without waste. This customization can allow

					applications to run faster through massive parallelism,

					usually with compelling energy efficiency.

					•

					The downside: Large programs may have to be tuned

					and restructured to fit on a device. Resource sharing

					features of compilers can help to address this, but

					usually with some degradation in performance that

					reduces the benefit of using an FPGA. ISA-based

					accelerators are very efficient resource sharing

					423

					www. dbooks . or g

				

			

		

		
			
				
					ChAPter 17 ProGrAmminG For FPGAs

					implementations—FPGAs prove most valuable

					for compute primarily when an application can be

					architected to utilize most of the available area.

					Taken to the extreme, resource sharing solutions on an FPGA lead

					to an architecture that looks like an ISA-based accelerator, but that is

					built in reconfigurable logic instead being optimized in fixed silicon. The

					reconfigurable logic leads to overhead relative to a fixed silicon design—

					therefore, FPGAs are not typically chosen as ways to implement ISAs.

					FPGAs are of prime benefit when an application is able to utilize the

					resources to implement efficient data flow algorithms, which we cover in

					the coming sections.

					Pipeline Parallelism

					Another question that often arises from Figure 17-2 is how the spatial

					implementation of a program relates to a clock frequency and how quickly

					a program will execute from start to finish. In the example shown, it’s easy

					to believe that data could be loaded from memory, have multiplication

					and addition operations performed, and have the result stored back

					into memory, quite quickly. As the program becomes larger, potentially

					with tens of thousands of operations across the FPGA device, it becomes

					apparent that for all of the instructions to operate one after the other

					(operations often depend on results produced by previous operations), it

					might take significant time given the processing delays introduced by each

					operation.

					Intermediate results between operations are updated (propagated)

					over time in a spatial architecture as shown in Figure 17-3. For example,

					the load executes and then passes its result into the multiplier, whose

					result is then passed into the adder and so on. After some amount of time,

					the intermediate data has propagated all the way to the end of the chain of

					operations, and the final result is available or stored to memory.

					424

					[bookmark: 444_0]
					[bookmark: 444_1]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					Figure 17-3. Propagation time of a naïve spatial compute

					implementation

					A spatial implementation as shown in Figure 17-3 is quite inefficient,

					because most of the hardware is only doing useful work a small percentage

					of the time. Most of the time, an operation such as the multiply is

					either waiting for new data from the load or holding its output so that

					operations later in the chain can use its result. Most spatial compilers and

					implementations address this inefficiency by pipelining, which means that

					execution of a single program is spread across many clock cycles. This is

					achieved by inserting registers (a data storage primitive in the hardware)

					between some operations, where each register holds a binary value for the

					duration of a clock cycle. By holding the result of an operation’s output so

					that the next operation in the chain can see and operate on that held value,

					the previous operation is free to work on a different computation without

					impacting the input to following operations.

					The goal of algorithmic pipelining is to keep every operation

					(hardware unit) busy every clock cycle. Figure 17-4 shows a pipelined

					implementation of the previous simple example. Keep in mind that the

					compiler does all of the pipelining and balancing for us! We cover this

					topic so that we can understand how to fill the pipeline with work in the

					coming sections, not because we need to worry about manually pipelining

					anything in our code.

					425

					www. dbooks . or g

					[bookmark: 445_0]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					*

					+

					Figure 17-4. Pipelining of a computation: Stages execute in

					parallel

					When a spatial implementation is pipelined, it becomes extremely

					efficient in the same way as a factory assembly line. Each pipeline stage

					performs only a small amount of the overall work, but it does so quickly

					and then begins to work on the next unit of work immediately afterward.

					It takes many clock cycles for a single computation to be processed by the

					pipeline, from start to finish, but the pipeline can compute many different

					instances of the computation on different data simultaneously.

					When enough work starts executing in the pipeline, over enough

					consecutive clock cycles, then every single pipeline stage and therefore

					operation in the program can perform useful work during every

					clock cycle, meaning that the entire spatial device performs work

					simultaneously. This is one of the powers of spatial architectures—the

					entire device can execute work in parallel, all of the time. We call this

					pipeline parallelism.

					Pipeline parallelism is the primary form of parallelism exploited on

					FPGAs to achieve performance.

					426

					[bookmark: 446_0]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					PIPELINING IS AUTOMATIC

					in the intel implementation of DPC++ for FPGAs, and in other high-level

					programming solutions for FPGAs, the pipelining of an algorithm is performed

					automatically by the compiler. it is useful to roughly understand the

					implementation on spatial architectures, as described in this section, because

					then it becomes easier to structure applications to take advantage of the

					pipeline parallelism. it should be made clear that pipeline register insertion and

					balancing is performed by the compiler and not manually by developers.

					Real programs and algorithms often have control flow (e.g., if/else

					structures) that leaves some parts of the program inactive a certain

					percentage of the clock cycles. FPGA compilers typically combine

					hardware from both sides of a branch, where possible, to minimize

					wasted spatial area and to maximize compute efficiency during control

					flow divergence. This makes control flow divergence much less expensive

					and less of a development concern than on other, especially vectorized

					architectures.

					Kernels Consume Chip “Area”

					In existing implementations, each kernel in a DPC++ application generates

					a spatial pipeline that consumes some resources of the FPGA (we can think

					about this as space or area on the device), which is conceptually shown in

					Figure 17-5.

					427

					www. dbooks . or g

					[bookmark: 447_0]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					Figure 17-5. Multiple kernels in the same FPGA binary: Kernels can

					run concurrently

					Since a kernel uses its own area on the device, different kernels can

					execute concurrently. If one kernel is waiting for something such as

					a memory access, other kernels on the FPGA can continue executing

					because they are independent pipelines elsewhere on the chip. This idea,

					formally described as independent forward progress between kernels, is a

					critical property of FPGA spatial compute.

					When to Use an FPGA

					Like any accelerator architecture, predicting when an FPGA is the right

					choice of accelerator vs. an alternative often comes down to knowledge

					of the architecture, the application characteristics, and the system

					bottlenecks. This section describes some of the characteristics of an

					application to consider.

					Lots and Lots of Work

					Like most modern compute accelerators, achieving good performance

					requires a large amount of work to be performed. If computing a single

					result from a single element of data, then it may not be useful to leverage

					428

					[bookmark: 448_0]
					[bookmark: 448_1]
					[bookmark: 448_2]
				

			

		

		
			
				
					ChAPter 17 ProGrAmminG For FPGAs

					an accelerator at all (of any kind). This is no different with FPGAs. Knowing

					that FPGA compilers leverage pipeline parallelism makes this more

					apparent. A pipelined implementation of an algorithm has many stages,

					often thousands or more, each of which should have different work within

					it in any clock cycle. If there isn’t enough work to occupy most of the

					pipeline stages most of the time, then efficiency will be low. We’ll call the

					average utilization of pipeline stages over time occupancy of the pipeline.

					This is different from the definition of occupancy used when optimizing

					other architectures such as GPUs!

					There are multiple ways to generate work on an FPGA to fill the

					pipeline stages, which we’ll cover in coming sections.

					Custom Operations or Operation Widths

					FPGAs were originally designed to perform efficient integer and bitwise

					operations and to act as glue logic that could adapt interfaces of other

					chips to work with each other. Although FPGAs have evolved into

					computational powerhouses instead of just glue logic solutions, they are

					still very efficient at bitwise operations, integer math operations on custom

					data widths or types, and operations on arbitrary bit fields in packet

					headers.

					The fine-grained architecture of an FPGA, described at the end of

					this chapter, means that novel and arbitrary data types can be efficiently

					implemented. For example, if we need a 33-bit integer multiplier or a

					129-bit adder, FPGAs can provide these custom operations with great

					efficiency. Because of this flexibility, FPGAs are commonly employed in

					rapidly evolving domains, such as recently in machine learning, where the

					data widths and operations have been changing faster than can be built

					into ASICs.

					429

					www. dbooks . or g

					[bookmark: 449_0]
					[bookmark: 449_1]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					Scalar Data Flow

					An important aspect of FPGA spatial pipelines, apparent from Figure 17-4,

					is that the intermediate data between operations not only stays on-chip

					(is not stored to external memory), but that intermediate data between

					each pipeline stage has dedicated storage registers. FPGA parallelism

					comes from pipelining of computation such that many operations are

					being executed concurrently, each at a different stage of the pipeline. This

					is different from vector architectures where multiple computations are

					executed as lanes of a shared vector instruction.

					The scalar nature of the parallelism in a spatial pipeline is important for

					many applications, because it still applies even with tight data dependences

					across the units of work. These data dependences can be handled without

					loss of performance, as we will discuss later in this chapter when talking about

					loop-carried dependences. The result is that spatial pipelines, and therefore

					FPGAs, are compelling for algorithms where data dependences across units of

					work (such as work-items) can’t be broken and fine-grained communication

					must occur. Many optimization techniques for other accelerators focus

					on breaking these dependences though various techniques or managing

					communication at controlled scales through features such as sub-groups.

					FPGAs can instead perform well with communication from tight dependences

					and should be considered for classes of algorithms where such patterns exist.

					LOOPS ARE FINE!

					A common misconception on data flow architectures is that loops with either

					fixed or dynamic iteration counts lead to poor data flow performance, because

					they aren’t simple feed-forward pipelines. At least with the intel DPC++ and

					FPGA toolchains, this is not true. Loop iterations can instead be a good way to

					produce high occupancy within the pipeline, and the compilers are built around

					the concept of allowing multiple loop iterations to execute in an overlapped

					way. Loops provide an easy mechanism to keep the pipeline busy with work!

					430

					[bookmark: 450_0]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					Low Latency and Rich Connectivity

					More conventional uses of FPGAs which take advantage of the rich input

					and output transceivers on the devices apply equally well for developers

					using DPC++. For example, as shown in Figure 17-6, some FPGA

					accelerator cards have network interfaces that make it possible to stream

					data directly into the device, process it, and then stream the result directly

					back to the network. Such systems are often sought when processing

					latency needs to be minimized and where processing through operating

					system network stacks is too slow or needs to be offloaded.

					Figure 17-6. Low-latency I/O streaming: FPGA connects network

					data and computation tightly

					The opportunities are almost limitless when considering direct input/

					output through FPGA transceivers, but the options do come down to

					what is available on the circuit board that forms an accelerator. Because

					of the dependence on a specific accelerator card and variety of such uses,

					aside from describing the pipe language constructs in a coming section,

					this chapter doesn’t dive into these applications. We should instead read

					the vendor documentation associated with a specific accelerator card or

					search for an accelerator card that matches our specific interface needs.

					431

					www. dbooks . or g

					[bookmark: 451_0]
					[bookmark: 451_1]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					Customized Memory Systems

					Memory systems on an FPGA, such as function private memory or work-

					group local memory, are built out of small blocks of on-chip memory. This

					is important because each memory system is custom built for the specific

					portion of an algorithm or kernel using it. FPGAs have significant on-chip

					memory bandwidth, and combined with the formation of custom memory

					systems, they can perform very well on applications that have atypical

					memory access patterns and structures. Figure 17-7 shows some of the

					optimizations that can be performed by the compiler when a memory

					system is implemented on an FPGA.

					�²±¦¨³·¸¤¯ꢀ�²§¨¯

					�¨°²µ¼ꢀ�¼¶·¨°

					�³·¬°¬½¨§ꢀ¦¸¶·²°ꢀ°¨°²µ¼ꢀ¶¼¶·¨°

					�¨°²µ¼ꢀ�¼¶·¨°

					�¨°²µ¼

					�¤±®ꢀꢁ

					�¤±®ꢀꢃ �¤±®ꢀꢂ

					�²¤§ �²¤§ �·²µ¨ �²¤§ �·²µ¨

					�²¤§ �²¤§ �·²µ¨ �²¤§ �·²µ¨

					Figure 17-7. FPGA memory systems are customized by the compiler

					for our specific code

					Other architectures such as GPUs have fixed memory structures that

					are easy to reason about by experienced developers, but that can also be

					hard to optimize around in many cases. Many optimizations on other

					accelerators are focused around memory pattern modification to avoid

					bank conflicts, for example. If we have algorithms that would benefit from

					a custom memory structure, such as a different number of access ports

					per bank or an unusual number of banks, then FPGAs can offer immediate

					advantages. Conceptually, the difference is between writing code to use a

					fixed memory system efficiently (most other accelerators) and having the

					memory system custom designed by the compiler to be efficient with our

					specific code (FPGA).

					432

					[bookmark: 452_0]
					[bookmark: 452_1]
					[bookmark: 452_2]
				

			

		

		
			
				
					ChAPter 17 ProGrAmminG For FPGAs

					Running on an FPGA

					There are two steps to run a kernel on an FPGA (as with any ahead-of-time

					compilation accelerator):

					1. Compiling the source to a binary which can be run

					on our hardware of interest

					2. Selecting the correct accelerator that we are

					interested in at runtime

					To compile kernels so that they can run on FPGA hardware, we can use

					the command line:

					dpcpp -fintelfpga my_source_code.cpp -Xshardware

					This command tells the compiler to turn all kernels in my_source_

					code.cppinto binaries that can run on an Intel FPGA accelerator and then

					to package them within the host binary that is generated. When we execute

					the host binary (e.g., by running ./a.outon Linux), the runtime will

					automatically program any attached FPGA as required, before executing

					the submitted kernels, as shown in Figure 17-8.

					433

					www. dbooks . or g

					[bookmark: 453_0]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					Fat binary

					Host binary

					01101

					10101

					FPGA

					programming

					binary

					Kernel 1

					Kernel 2

					FPGA binary

					1

					01101

					10101

					01101

					10101

					2

					Programming is automatic! The DPC++ runtime

					programs the FPGA device behind the scenes

					when needed, before a kernel runs on it.

					Figure 17-8. FPGA programmed automatically at runtime

					FPGA programming binaries are embedded within the compiled

					DPC++ executable that we run on the host. the FPGA is

					automatically configured behind the scenes for us.

					When we run a host program and submit the first kernel for execution

					on an FPGA, there might be a slight delay before the kernel begins

					executing, while the FPGA is programmed. resubmitting kernels for

					additional executions won’t see the same delay because the kernel is

					already programmed to the device and ready to run.

					Selection of an FPGA device at runtime was covered in Chapter 2. We

					need to tell the host program where we want kernels to run because there

					are typically multiple accelerator options available, such as a CPU and

					GPU, in addition to the FPGA. To quickly recap one method to select an

					FPGA during program execution, we can use code like that in Figure 17-9.

					434

					[bookmark: 454_0]
				

			

		

		
			
				
					ChAPter 17 ProGrAmminG For FPGAs

					#include <CL/sycl.hpp>

					#include <CL/sycl/intel/fpga_extensions.hpp> // For fpga_selector

					using namespace sycl;

					void say_device (const queue& Q) {

					std::cout << "Device : "

					<< Q.get_device().get_info<info::device::name>()

					<< "\n";

					}

					int main() {

					queue Q{ INTEL::fpga_selector{} };

					say_device(Q);

					Q.submit([&](handler &h){

					h.parallel_for(1024, [=](auto idx) {

					// ...

					});

					});

					return 0;

					}

					Figure 17-9. Choosing an FPGA device at runtime using the

					fpga_selector

					Compile Times

					Rumors abound that compiling designs for an FPGA can take a long time, much

					longer than compiling for ISA-based accelerators. The rumors are true! The end

					of this chapter overviews the fine-grained architectural elements of an FPGA

					that lead to both the advantages of an FPGA and the computationally intensive

					compilation (place-and-route optimizations) that can take hours in some cases.

					The compile time from source code to FPGA hardware execution

					is long enough that we don’t want to develop and iterate on our code

					exclusively in hardware. FPGA development flows offer several stages

					that minimize the number of hardware compilations, to make us

					productive despite the hardware compile times. Figure 17-10 shows

					the typical stages, where most of our time is spent on the early steps

					that provide fast turnaround and rapid iteration.

					435

					www. dbooks . or g

					[bookmark: 455_0]
					[bookmark: 455_1]
					[bookmark: 455_2]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					����ꢀ�¨¹¨¯²³°¨±·ꢀ�¯²º

					�²§¬±ª

					�°¸¯¤·¬²±ꢀ

					�¨¦²±§¶

					�¬±¸·¨¶

					c�¸±¦·¬²±¤¯ꢀ�¤¯§¤·¬²±d

					�·¤·¬¦ꢀ

					�¨³²µ·¶

					�¸¯¯ꢀ�²°³¬¯¨ꢀ¤±§ꢀ

					�¤µ§º¤µ¨ꢀ�µ²©¬¯¬±ª

					�²¸µ¶

					�¨³¯²¼

					Figure 17-10. Most verification and optimization occurs prior to

					lengthy hardware compilation

					Emulation and static reports from the compiler are the cornerstones

					of FPGA code development in DPC++. The emulator acts as if it was

					an FPGA, including supporting relevant extensions and emulating the

					execution model, but runs on the host processor. Compilation time

					is therefore the same as we would expect from compilation to a CPU

					device, although we won’t see the performance boost that we would from

					execution on actual FPGA hardware. The emulator is great for establishing

					and testing functional correctness in an application.

					Static reports, like emulation, are generated quickly by the toolchain.

					They report on the FPGA structures created by the compiler and on

					bottlenecks identified by the compiler. Both of these can be used to predict

					whether our design will achieve good performance when run on FPGA

					hardware and are used to optimize our code. Please read the vendor’s

					documentation for information on the reports, which are often improved

					from release to release of a toolchain (see documentation for the latest

					and greatest features!). Extensive documentation is provided by vendors

					436

					[bookmark: 456_0]
					[bookmark: 456_1]
				

			

		

		
			
				
					ChAPter 17 ProGrAmminG For FPGAs

					on how to interpret and optimize based on the reports. This information

					would be the topic of another book, so we can’t dive into details in this

					single chapter.

					The FPGA Emulator

					Emulation is primarily used to functionally debug our application, to make

					sure that it behaves as expected and produces correct results. There is no

					reason to do this level of development on actual FPGA hardware where

					compile times are longer. The emulation flow is activated by removing

					the -Xshardwareflag from the dpcppcompilation command and at the

					same time using the INTEL::fpga_emulator_selectorinstead of the

					INTEL::fpga_selectorin our host code. We would compile using a

					command like

					dpcpp -fintelfpga my_source_code.cpp

					Simultaneously, we would choose the FPGA emulator at runtime

					using code such as in Figure 17-11. By using fpga_emulator_selector,

					whichuses the host processor to emulate an FPGA, we maintain a rapid

					development and debugging process before we have to commit to the

					lengthier compile for actual FPGA hardware.

					437

					www. dbooks . or g

					[bookmark: 457_0]
				

			

		

		
			
				
					ChAPter 17 ProGrAmminG For FPGAs

					#include <CL/sycl.hpp>

					#include <CL/sycl/intel/fpga_extensions.hpp> // For fpga_selector

					using namespace sycl;

					void say_device (const queue& Q) {

					std::cout << "Device : "

					<< Q.get_device().get_info<info::device::name>() << "\n";

					}

					int main() {

					queue Q{ INTEL::fpga_emulator_selector{} };

					say_device(Q);

					Q.submit([&](handler &h){

					h.parallel_for(1024, [=](auto idx) {

					// ...

					});

					});

					return 0;

					}

					Figure 17-11. Using fpga_emulator_selector for rapid

					development and debugging

					If we are switching between hardware and the emulator frequently, it

					can make sense to use a macro within our program to flip between device

					selectors from the command line. Check the vendor’s documentation and

					online FPGA DPC++ code examples for examples of this, if needed.

					FPGA Hardware Compilation Occurs “Ahead-of-Time”

					The Full Compile and Hardware Profiling stage in Figure 17-10 is an ahead-

					of-time compile in SYCL terminology. This means that the compilation of

					the kernel to a device binary occurs when we initially compile our program

					and not when the program is submitted to a device to be run. On an FPGA,

					this is particularly important because

					438

					[bookmark: 458_0]
					[bookmark: 458_1]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					1. Compilation takes a length of time that we

					don’t normally want to incur when running an

					application.

					2. DPC++ programs may be executed on systems

					that don’t have a capable host processor. The

					compilation process to an FPGA binary benefits

					from a fast processor with a good amount of

					attached memory. Ahead-of-time compilation lets

					us easily choose where the compile occurs, rather

					than having it run on systems where the program is

					deployed.

					A LOT HAPPENS BEHIND THE SCENES WITH DPC++ ON AN FPGA!

					Conventional FPGA design (not using a high-level language) can be very

					complicated. there are many steps beyond just writing our kernel, such

					as building and configuring the interfaces that communicate with off-chip

					memories and closing timing by inserting registers needed to make the

					compiled design run fast enough to communicate with certain peripherals.

					DPC++ solves all of this for us, so that we don’t need to know anything about

					the details of conventional FPGA design to achieve working applications!

					the tooling treats our kernels as code to optimize and make efficient on the

					device and then automatically handles all of the details of talking to off-chip

					peripherals, closing timing, and setting up drivers for us.

					Achieving peak performance on an FPGA still requires detailed knowledge of

					the architecture, just like any other accelerator, but the steps to move from

					code to a working design are much simpler and more productive with DPC++

					than in traditional FPGA flows.

					439

					www. dbooks . or g

					[bookmark: 459_0]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					Writing Kernels for FPGAs

					Once we have decided to use an FPGA for our application or even just

					decided to try one out, having an idea of how to write code to see good

					performance is important. This section describes topics that highlight

					important concepts and covers a few topics that often cause confusion, to

					make getting started faster.

					Exposing Parallelism

					We have already looked at how pipeline parallelism is used to efficiently

					perform work on an FPGA. Another simple pipeline example is shown in

					Figure 17-12.

					Figure 17-12. Simple pipeline with five stages: Six clock cycles to

					process an element of data

					440

					[bookmark: 460_0]
					[bookmark: 460_1]
					[bookmark: 460_2]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					In this pipeline, there are five stages. Data moves from one stage to the

					next once per clock cycle, so in this very simple example, it takes six clock

					cycles from when data enters into stage 1 until it exits from stage 5.

					A major goal of pipelining is to enable multiple elements of data to be

					processed at different stages of the pipeline, simultaneously. To be sure

					that this is clear, Figure 17-13 shows a pipeline where there is not enough

					work (only one element of data in this case), which causes each pipeline

					stage to be unused during most of the clock cycles. This is an inefficient

					use of the FPGA resources because most of the hardware is idle most of

					the time.

					ꢂꢂꢂ

					�¯²¦®ꢀ�¼¦¯¨ꢀꢁ

					�¯²¦®ꢀ�¼¦¯¨ꢀꢂ

					�¯²¦®ꢀ�¼¦¯¨ꢀꢁ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢁ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢁ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢃ

					�¤·¤

					�°³·¼

					�¤·¤

					�°³·¼

					�°³·¼

					�°³·¼

					�°³·¼

					�¤·¤

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢂ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢂ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢄ

					�°³·¼

					�°³·¼

					�°³·¼

					�°³·¼

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢃ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢃ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢅ

					�°³·¼

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢄ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢄ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢆ

					�°³·¼

					�°³·¼

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢅ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢁ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢁ

					Figure 17-13. Pipeline stages are mostly unused if processing only a

					single element of work

					441

					www. dbooks . or g

					[bookmark: 461_0]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					To keep the pipeline stages better occupied, it is useful to imagine a

					queue of un-started work waiting before the first stage, which feeds the

					pipeline. Each clock cycle, the pipeline can consume and start one more

					element of work from the queue, as shown in Figure 17-14. After some

					initial startup cycles, each stage of the pipeline is occupied and doing

					useful work every clock cycle, leading to efficient utilization of the FPGA

					resources.

					²µ®ꢀµ¨¤§¼ꢀ·²ꢀ¶·¤µ·

					²µ®ꢀµ¨¤§¼ꢀ·²ꢀ¶·¤µ·

					²µ®ꢀµ¨¤§¼ꢀ·²ꢀ¶·¤µ·

					ꢇ ꢈ ꢉ ꢅ ꢄ ꢃ ꢂ

					ꢇ ꢈ ꢉ ꢅ ꢄ ꢃ

					ꢇ ꢈ ꢉ

					ꢆꢆꢆ

					�¯²¦®ꢀ�¼¦¯¨ꢀꢁ

					�¯²¦®ꢀ�¼¦¯¨ꢀꢂ

					�¯²¦®ꢀ�¼¦¯¨ꢀꢅ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢁ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢁ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢁ

					�¤·¤ꢀꢁ

					�¤·¤ꢀꢂ

					�¤·¤ꢀꢅ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢂ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢂ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢂ

					�¤·¤ꢀꢁ

					�°³·¼

					�°³·¼

					�°³·¼

					�°³·¼

					�°³·¼

					�°³·¼

					�°³·¼

					�¤·¤ꢀꢄ

					�¤·¤ꢀꢃ

					�¤·¤ꢀꢂ

					�¤·¤ꢀꢁ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢃ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢃ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢃ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢄ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢄ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢄ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢅ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢅ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢅ

					Figure 17-14. Efficient utilization comes when each pipeline stage is

					kept busy

					The following two sections cover methods to keep the queue feeding

					the pipeline filled with work that is ready to start. We’ll look at

					1. ND-range kernels

					2. Loops

					442

					[bookmark: 462_0]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					Choosing between these options impacts how kernels that run on an

					FPGA should be fundamentally architected. In some cases, algorithms

					lend themselves well to one style or the other, and in other cases

					programmer preference and experience inform which method should be

					chosen.

					Keeping the Pipeline Busy Using ND-Ranges

					The ND-range hierarchical execution model was described in Chapter 4.

					Figure 17-15 illustrates the key concepts: an ND-range execution model

					where there is a hierarchical grouping of work-items, and where a work-

					item is the primitive unit of work that a kernel defines. This model was

					originally developed to enable efficient programming of GPUs where

					work-items may execute concurrently at various levels of the execution

					model hierarchy. To match the type of work that GPU hardware is efficient

					at, ND-range work-items do not frequently communicate with each other

					in most applications.

					Figure 17-15. ND-range execution model: A hierarchical grouping of

					work-items

					443

					www. dbooks . or g

					[bookmark: 463_0]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					The FPGA spatial pipeline can be very efficiently filled with work using

					an ND-range. This programming style is fully supported on FPGA, and

					we can think of it as depicted in Figure 17-16 where on each clock cycle, a

					different work-item enters the first stage of the pipeline.

					��`µ¤±ª¨

					��`µ¤±ª¨

					��`µ¤±ª¨

					ꢂꢂꢂ

					�¯²¦®ꢀ�¼¦¯¨ꢀꢁ

					�¯²¦®ꢀ�¼¦¯¨ꢀꢂ

					�¯²¦®ꢀ�¼¦¯¨ꢀꢁ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢁ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢁ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢃ

					²µ®`¬·¨°ꢀꢁ

					�°³·¼

					�°³·¼

					�°³·¼

					�°³·¼

					²µ®`¬·¨°ꢀꢄ

					²µ®`¬·¨°ꢀꢃ

					�°³·¼

					²µ®`¬·¨°ꢀꢁ

					²µ®`¬·¨°ꢀꢆ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢂ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢂ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢄ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢃ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢃ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢅ

					²µ®`¬·¨°ꢀꢅ

					²µ®`¬·¨°ꢀꢄ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢄ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢄ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢆ

					�°³·¼

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢅ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢅ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢁ

					²µ®`¬·¨°ꢀꢃ

					�°³·¼

					Figure 17-16. ND-range feeding a spatial pipeline

					When should we create an ND-range kernel on an FPGA using

					work-items to keep the pipeline occupied? It’s simple. Whenever we can

					structure our algorithm or application as independent work-items that

					don’t need to communicate often (or ideally at all), we should use ND-

					range! If work-items do need to communicate often or if we don’t naturally

					think in terms of ND-ranges, then loops (described in the next section)

					provide an efficient way to express our algorithm as well.

					444

					[bookmark: 464_0]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					if we can structure our algorithm so that work-items don’t need

					to communicate much (or at all), then nD-range is a great way to

					generate work to keep the spatial pipeline full!

					A good example of a kernel that is efficient with an ND-range feeding

					the pipeline is a random number generator, where creation of numbers in

					the sequence is independent of the previous numbers generated.

					Figure 17-17 shows an ND-range kernel that will call the random

					number generation function once for each work-item in the 16 ×16 ×16

					range. Note how the random number generation function takes the work-

					item id as input.

					h.parallel_for({16,16,16}, [=](auto I) {

					output[I] = generate_random_number_from_ID(I);

					});

					Figure 17-17. Multiple work-item (16 × 16 × 16) invocation of a

					random number generator

					The example shows a parallel_forinvocation that uses a range,

					with only a global size specified. We can alternately use the parallel_for

					invocation style that takes an nd_range, where both the global work

					size and local work-group sizes are specified. FPGAs can very efficiently

					implement work-group local memory from on-chip resources, so feel free

					to use work-groups whenever they make sense, either because we want

					work-group local memory or because having work-group IDs available

					simplifies our code.

					445

					www. dbooks . or g

					[bookmark: 465_0]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					PARALLEL RANDOM NUMBER GENERATORS

					the example in Figure 17-17 assumes that generate_random_number_

					from_ID(I)is a random number generator which has been written to be

					safe and correct when invoked in a parallel way. For example, if different

					work-items in the parallel_forrange execute the function, we expect

					different sequences to be created by each work-item, with each sequence

					adhering to whatever distribution is expected from the generator. Parallel

					random number generators are themselves a complex topic, so it is a good

					idea to use libraries or to learn about the topic through techniques such as

					block skip-ahead algorithms.

					Pipelines Do Not Mind Data Dependences!

					One of the challenges when programming vector architectures (e.g., GPUs)

					where some work-items execute together as lanes of vector instructions is

					structuring an algorithm to be efficient without extensive communication

					between work-items. Some algorithms and applications lend themselves

					well to vector hardware, and some don’t. A common cause of a poor

					mapping is an algorithmic need for extensive sharing of data, due to data

					dependences with other computations that are in some sense neighbors.

					Sub-groups address some of this challenge on vector architectures by

					providing efficient communication between work-items in the same sub-

					group, as described in Chapter 14.

					FPGAs play an important role for algorithms that can’t be decomposed

					into independent work. FPGA spatial pipelines are not vectorized across

					work-items, but instead execute consecutive work-items across pipeline

					stages. This implementation of the parallelism means that fine-grained

					communication between work-items (even those in different work-groups)

					can be implemented easily and efficiently within the spatial pipeline!

					446

				

			

		

		
			
				
					ChAPter 17 ProGrAmminG For FPGAs

					One example is a random number generator where output N+1

					depends on knowing what output N was. This creates a data dependence

					between two outputs, and if each output is generated by a work-item in an

					ND-range, then there is a data dependence between work-items that can

					require complex and often costly synchronization on some architectures.

					When coding such algorithms serially, one would typically write a loop,

					where iteration N+1 uses the computation from iteration N, such as shown

					in Figure 17-18. Each iteration depends on the state computed by the

					previous iteration. This is a very common pattern.

					int state = 0;

					for (int i=0; i < size; i++) {

					state = generate_random_number(state);

					output[i] = state;

					}

					Figure 17-18. Loop-carried data dependence (state)

					Spatial implementations can very efficiently communicate results

					backward in the pipeline to work that started in a later cycle (i.e., to work

					at an earlier stage in the pipeline), and spatial compilers implement

					many optimizations around this pattern. Figure 17-19 shows the idea

					of backward communication of data, from stage 5 to stage 4. Spatial

					pipelines are not vectorized across work-items. This enables efficient

					data dependence communication by passing results backward in the

					pipeline!

					447

					www. dbooks . or g

					[bookmark: 467_0]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					*

					if

					-

					+

					*

					Figure 17-19. Backward communication enables efficient data

					dependence communication

					The ability to pass data backward (to an earlier stage in the pipeline)

					is key to spatial architectures, but it isn’t obvious how to write code that

					takes advantage of it. There are two approaches that make expressing this

					pattern easy:

					1. Loops

					2. Intra-kernel pipes with ND-range kernels

					The second option is based on pipes that we describe later in this

					chapter, but it isn’t nearly as common as loops so we mention it for

					completeness, but don’t detail it here. Vendor documentation provides

					more details on the pipe approach, but it’s easier to stick to loops which

					are described next unless there is a reason to do otherwise.

					448

					[bookmark: 468_0]
				

			

		

		
			
				
					ChAPter 17 ProGrAmminG For FPGAs

					Spatial Pipeline Implementation of a Loop

					A loop is a natural fit when programming an algorithm that has data

					dependences. Loops frequently express dependences across iterations,

					even in the most basic loop examples where the counter that determines

					when the loop should exit is carried across iterations (variable iin

					Figure 17-20).

					int a = 0;

					for (int i=0; i < size; i++) {

					a = a + i;

					}

					Figure 17-20. Loop with two loop-carried dependences (i.e., i and a)

					In the simple loop of Figure 17-20, it is understood that the value of

					awhich is on the right-hand side of a= a + ireflects the value stored by

					the previous loop iteration or the initial value if it’s the first iteration of

					the loop. When a spatial compiler implements a loop, iterations of the

					loop can be used to fill the stages of the pipeline as shown in Figure 17-21.

					Notice that the queue of work which is ready to start now contains loop

					iterations, not work-items!

					449

					www. dbooks . or g

					[bookmark: 469_0]
					[bookmark: 469_1]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					�²²³ꢀ¬·¨µ¤·¬²±¶

					�²²³ꢀ¬·¨µ¤·¬²±¶

					�²²³ꢀ¬·¨µ¤·¬²±¶

					ꢇ ꢈ ꢉ ꢁ ꢆ ꢅ ꢄ

					ꢇ ꢈ ꢉ ꢁ ꢆ ꢅ

					ꢇ ꢈ ꢉ

					ꢂꢂꢂ

					�¯²¦®ꢀ�¼¦¯¨ꢀꢁ

					�¯²¦®ꢀ�¼¦¯¨ꢀꢂ

					�¯²¦®ꢀ�¼¦¯¨ꢀꢁ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢁ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢁ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢃ

					�·¨µ¤·¬²±ꢀꢄ

					�·¨µ¤·¬²±ꢀꢁ

					�·¨µ¤·¬²±ꢀꢃ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢂ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢂ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢄ

					�·¨µ¤·¬²±ꢀꢃ

					�°³·¼

					�°³·¼

					�°³·¼

					�·¨µ¤·¬²±ꢀꢆ

					�°³·¼

					�°³·¼

					�°³·¼

					�°³·¼

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢃ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢃ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢅ

					�·¨µ¤·¬²±ꢀꢅ

					�·¨µ¤·¬²±ꢀꢄ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢄ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢄ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢆ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢅ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢅ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢁ

					�·¨µ¤·¬²±ꢀꢃ

					Figure 17-21. Pipelines stages fed by successive iterations of a loop

					A modified random number generator example is shown in Figure 17-22.

					In this case, instead of generating a number based on the id of a work-item,

					as in Figure 17-17, the generator takes the previously computed value as an

					argument.

					h.single_task([=]() {

					int state = seed;

					for (int i=0; i < size; i++) {

					state = generate_incremental_random_number(state);

					output[i] = state;

					}

					});

					Figure 17-22. Random number generator that depends on previous

					value generated

					450

					[bookmark: 470_0]
					[bookmark: 470_1]
				

			

		

		
			
				
					ChAPter 17 ProGrAmminG For FPGAs

					The example uses single_taskinstead of parallel_forbecause the

					repeated work is expressed by a loop within the single task, so there isn’t

					a reason to also include multiple work-items in this code (via parallel_

					for). The loop inside the single_taskmakes it much easier to express

					(programming convenience) that the previously computed value of tempis

					passed to each invocation of the random number generation function.

					In cases such as Figure 17-22, the FPGA can implement the loop

					efficiently. It can maintain a fully occupied pipeline in many cases or can

					at least tell us through reports what to change to increase occupancy.

					With this in mind, it becomes clear that this same algorithm would be

					much more difficult to describe if loop iterations were replaced with

					work-items, where the value generated by one work-item would need to

					be communicated to another work-item to be used in the incremental

					computation. The code complexity would rapidly increase, particularly

					if the work couldn’t be batched so that each work-item was actually

					computing its own independent random number sequence.

					Loop Initiation Interval

					Conceptually, we probably think of iterations of a loop in C++ as executing

					one after another, as shown in Figure 17-23. That’s the programming

					model and is the right way to think about loops. In implementation,

					though, compilers are free to perform many optimizations as long as most

					behavior (i.e., defined and race-free behavior) of the program doesn’t

					observably change. Regardless of compiler optimizations, what matters is

					that the loop appears to execute as if Figure 17-23 is how it happened.

					451

					www. dbooks . or g

					[bookmark: 471_0]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					�²²³ꢀ¬·¨µ¤·¬²±ꢀꢁ

					�¤·¤ꢀ§¨³¨±§¨±¦¨

					�²²³ꢀ¬·¨µ¤·¬²±ꢀꢂ

					�¤·¤ꢀ§¨³¨±§¨±¦¨

					�²²³ꢀ¬·¨µ¤·¬²±ꢀꢃ

					Figure 17-23. Conceptually, loop iterations execute one after another

					Moving into the spatial compiler perspective, Figure 17-24 shows a

					loop pipelining optimization where the execution of iterations of a loop are

					overlapped in time. Different iterations will be executing different stages of

					the spatial pipeline from each other, and data dependences across stages

					of the pipeline can be managed by the compiler to ensure that the program

					appears to execute as if the iterations were sequential (except that the loop

					will finish executing sooner!).

					�¨µ¬¤¯ꢀ¨»¨¦¸·¬²±ꢀ²©ꢀ¯²²³

					�²²³ꢀ³¬³¨¯¬±¨§ꢀ¨»¨¦¸·¬²±

					�²²³ꢀ

					�²²³ꢀ¬·¨µ¤·¬²±ꢀꢁ

					¬·¨µ¤·¬²±ꢀꢁ

					�²²³ꢀ

					¬·¨µ¤·¬²±ꢀꢂ

					�¤·¤ꢀ§¨³¨±§¨±¦¨

					�²²³ꢀ

					¬·¨µ¤·¬²±ꢀꢃ

					�²²³ꢀ¬·¨µ¤·¬²±ꢀꢂ

					�¤·¤ꢀ§¨³¨±§¨±¦¨

					�²²³ꢀ¬·¨µ¤·¬²±ꢀꢃ

					Figure 17-24. Loop pipelining allows iterations of the loop to be

					overlapped across pipeline stages

					452

					[bookmark: 472_0]
					[bookmark: 472_1]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					Loop pipelining is easy to understand with the realization that many

					results within a loop iteration may finish computation well before the loop

					iteration finishes all of its work and that, in a spatial pipeline, results can

					be passed to an earlier pipeline stage when the compiler decides to do so.

					Figure 17-25 shows this idea where the results of stage 1 are fed backward

					in the pipeline, allowing a future loop iteration to use the result early,

					before the previous iteration has completed.

					Figure 17-25. A pipelined implementation of the incremental

					random number generator

					With loop pipelining, it is possible for the execution of many iterations

					of a loop to overlap. The overlap means that even with loop-carried data

					dependences, loop iterations can still be used to fill the pipeline with work,

					leading to efficient utilization. Figure 17-26 shows how loop iterations

					might overlap their executions, even with loop-carried data dependences,

					within the same simple pipeline as was shown in Figure 17-25.

					453

					www. dbooks . or g

					[bookmark: 473_0]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					�¯²¦®ꢀ¦¼¦¯¨

					����

					ꢄ

					ꢆ

					ꢇ

					ꢈ

					ꢉ

					�³§¤·¨§ꢀ·¨°³

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢆ

					�²²³ꢀ

					�²²³ꢀ

					�²²³ꢀ

					�²²³ꢀ

					ꢊꢊꢊ

					ꢊꢊꢊ

					¬·¨µ¤·¬²± ¬·¨µ¤·¬²± ¬·¨µ¤·¬²± ¬·¨µ¤·¬²±

					ꢆ

					ꢇ

					ꢈ

					ꢉ

					�²²³ꢀ

					¦²°³¯¨·¨ꢅ

					�±¦µ¨°¨±·¤¯

					µ¤±§²°ꢀ±¸°¥¨µ

					F

					�²²³ꢀ

					�²²³ꢀ

					�²²³ꢀ

					¬·¨µ¤·¬²± ¬·¨µ¤·¬²± ¬·¨µ¤·¬²±

					�¤·¤

					�¨°²µ¼ꢀ�·²µ¨

					�§§µ¨¶¶

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢇ

					ꢆ

					ꢇ

					ꢈ

					�¬°¨

					�²²³ꢀ³¬³¨¯¬±¬±ªꢁꢀ�¸¯·¬³¯¨ꢀ¬·¨µ¤·¬²±¶ꢀ¨»¨¦¸·¨ꢀ

					¤·ꢀ·«¨ꢀ¶¤°¨ꢀ·¬°¨ꢂꢀ¤±§ꢀ±²·ꢀ¶¨µ¬¤¯¯¼ꢃ

					Figure 17-26. Loop pipelining simultaneously processes parts of

					multiple loop iterations

					In real algorithms, it is often not possible to launch a new loop iteration

					every single clock cycle, because a data dependence may take multiple

					clock cycles to compute. This often arises if memory lookups, particularly

					from off-chip memories, are on the critical path of the computation of

					a dependence. The result is a pipeline that can only initiate a new loop

					iteration every Nclock cycles, and we refer to this as an initiation interval

					(II) of Ncycles. An example is shown in Figure 17-27. A loop initiation

					interval (II) of two means that a new loop iteration can begin every second

					cycle, which results in sub-optimal occupancy of the pipeline stages.

					454

					[bookmark: 474_0]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					ꢃ

					�¯²¦®ꢀ¦¼¦¯¨

					ꢄ

					ꢆ

					ꢇ

					ꢅ

					ꢉ

					ꢊ

					�²¤§ꢀ

					¤§§µ¨¶¶ꢀ

					§¨³¨±§¶ꢀ

					²±ꢀ³µ¨¹¬²¸¶ꢀ

					¯²¤§

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢄ

					�²²³ꢀ

					¬·¨µ¤·¬²±

					ꢄ

					�²²³ꢀ

					¬·¨µ¤·¬²±

					ꢆ

					�²²³ꢀ

					¬·¨µ¤·¬²±

					ꢇ

					ꢈꢈꢈ

					F

					�²²³ꢀ

					¬·¨µ¤·¬²±

					ꢄ

					�²²³ꢀ

					¬·¨µ¤·¬²±

					ꢆ

					�²²³ꢀ

					¬·¨µ¤·¬²±

					ꢇ

					�§§µ¨¶¶

					�¨°²µ¼ꢀ�²¤§

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢆ

					ꢈꢈꢈ

					ꢈꢈꢈ

					�²²³ꢀ

					¬·¨µ¤·¬²±

					ꢄ

					�²²³ꢀ

					¬·¨µ¤·¬²±

					ꢆ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢇ

					ꢅꢆ

					F

					�±¬·¬¤·¬²±ꢀ¬±·¨µ¹¤¯ꢁꢀ�²ºꢀ²©·¨±ꢀ¦¤±ꢀ

					¼²¸ꢀ¯¤¸±¦«ꢀ¤ꢀ±¨ºꢀ¯²²³ꢀ¬·¨µ¤·¬²±ꢂ

					�¬°¨

					Figure 17-27. Sub-optimal occupancy of pipeline stages

					An IIlarger than one can lead to inefficiency in the pipeline because

					the average occupancy of each stage is reduced. This is apparent from

					Figure 17-27 where II=2and pipeline stages are unused a large percentage

					(50%!) of the time. There are multiple ways to improve this situation.

					The compiler performs extensive optimization to reduce II whenever

					possible, so its reports will also tell us what the initiation interval of each

					loop is and give us information on why it is larger than one, if that occurs.

					Restructuring the compute in a loop based on the reports can often reduce

					the II, particularly because as developers, we can make loop structural

					changes that the compiler isn’t allowed to (because they would be

					observable). Read the compiler reports to learn how to reduce the IIin

					specific cases.

					An alternative way to reduce inefficiency from an IIthat is larger than

					one is through nested loops, which can fill all pipeline stages through

					interleaving of outer loop iterations with those of an inner loop that has

					II>1. Check vendor documentation and the compiler reports for details on

					using this technique.

					455

					www. dbooks . or g

					[bookmark: 475_0]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					Pipes

					An important concept in spatial and other architectures is a first-in first-

					out (FIFO) buffer. There are many reasons that FIFOs are important, but

					two properties are especially useful when thinking about programming:

					1. There is implicit control information carried

					alongside the data. These signals tell us whether

					the FIFO is empty or full and can be useful when

					decomposing a problem into independent pieces.

					2. FIFOs have storage capacity. This can make it

					easier to achieve performance in the presence of

					dynamic behaviors such as highly variable latencies

					when accessing memory.

					Figure 17-28 shows a simple example of a FIFO’s operation.

					�°³·¼

					µ¬·¨

					ꢀ

					ꢀ

					µ¬·¨

					ꢁ

					ꢂ

					ꢃ

					ꢀ

					ꢁ

					ꢂ

					ꢁ

					µ¬·¨

					ꢂ

					ꢁ

					ꢂ

					ꢀ

					ꢂ

					�¨¤§

					ꢀ

					�¨¤§

					ꢁ

					µ¬·¨

					ꢃ

					�¨¤§

					ꢂ

					ꢃ

					�¨¤§

					ꢃ

					�°³·¼

					Figure 17-28. Example operation of a FIFO over time

					456

					[bookmark: 476_0]
					[bookmark: 476_1]
					[bookmark: 476_2]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					FIFOs are exposed in DPC++ through a feature called pipes. The main

					reason that we should care about pipes when writing FPGA programs is

					that they allow us to decompose a problem into smaller pieces to focus on

					development and optimizations in a more modular way. They also allow

					the rich communication features of the FPGA to be harnessed. Figure 17-29

					shows both of these graphically.

					Figure 17-29. Pipes simplify modular design and access to hardware

					peripherals

					Remember that FPGA kernels can exist on the device simultaneously

					(in different areas of the chip) and that in an efficient design, all parts

					of the kernels are active all the time, every clock cycle. This means that

					optimizing an FPGA application involves considering how kernels or parts

					of kernels interact with one another, and pipes provide an abstraction to

					make this easy.

					Pipes are FIFOs that are implemented using on-chip memories on

					an FPGA, so they allow us to communicate between and within running

					kernels without the cost of moving data to off-chip memory. This provides

					inexpensive communication, and the control information that is coupled

					with a pipe (empty/full signals) provides a lightweight synchronization

					mechanism.

					457

					www. dbooks . or g

					[bookmark: 477_0]
					[bookmark: 477_1]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					DO WE NEED PIPES?

					no. it is possible to write efficient kernels without using pipes. We can use all

					of the FPGA resources and achieve maximum performance using conventional

					programming styles without pipes. But it is easier for most developers to

					program and optimize more modular spatial designs, and pipes are a great

					way to achieve this.

					As shown in Figure 17-30, there are four general types of pipes

					available. In the rest of this section, we’ll cover the first type (inter-kernel

					pipes), because they suffice to show what pipes are and how they are used.

					Pipes can also communicate within a single kernel and with the host or

					input/output peripherals. Please check vendor documentation for more

					information on those forms and uses of pipes that we don’t have room to

					dive into here.

					Figure 17-30. Types of pipe connectivity in DPC++

					458

					[bookmark: 478_0]
				

			

		

		
			
				
					ChAPter 17 ProGrAmminG For FPGAs

					A simple example is shown in Figure 17-31. In this case, there are

					two kernels that communicate through a pipe, with each read or write

					operating on a unit of an int.

					// Create alias for pipe type so that consistent across uses

					using my_pipe = pipe<class some_pipe, int>;

					// ND-range kernel

					Q.submit([&](handler& h) {

					auto A = accessor(B_in, h);

					h.parallel_for(count, [=](auto idx) {

					my_pipe::write(A[idx]);

					});

					});

					// Single_task kernel

					Q.submit([&](handler& h) {

					auto A = accessor(B_out, h);

					h.single_task([=]() {

					for (int i=0; i < count; i++) {

					A[i] = my_pipe::read();

					}

					});

					});

					Figure 17-31. Pipe between two kernels: (1) ND-range and (2) single

					task with a loop

					There are a few points to observe from Figure 17-31. First, two kernels

					are communicating with each other using a pipe. If there are no accessor

					or event dependences between the kernels, the DPC++ runtime will

					execute both at the same time, allowing them to communicate through the

					pipe instead of full SYCL memory buffers or USM.

					Pipes are identified using a type-based approach, where each is

					identified using a parameterization of the pipe type which is shown in

					Figure 17-32. The parameterization of the pipe type identifies a specific

					459

					www. dbooks . or g

					[bookmark: 479_0]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					pipe. Reads or writes on the same pipe type are to the same FIFO. There

					are three template parameters that together define the type and therefore

					identity of a pipe.

					template <typename name,

					typename dataT,

					size_t min_capacity = 0>

					class pipe;

					Figure 17-32. Parameterization of the pipe type

					It is recommended to use type aliases to define our pipe types, as

					shown in the first line of code in Figure 17-31, to reduce programming

					errors and improve code readability.

					Use type aliases to identify pipes. this simplifies code and prevents

					accidental creation of unexpected pipes.

					Pipes have a min_capacityparameter. It defaults to 0 which is

					automatic selection, but if specified, it guarantees that at least that number

					of words can be written to the pipe without any being read out. This

					parameter is useful when

					1. Two kernels communicating with a pipe do not run

					at the same time, and we need enough capacity in

					the pipe for a first kernel to write all of its outputs

					before a second kernel starts to run and reads from

					the pipe.

					2. If kernels generate or consume data in bursts, then

					adding capacity to a pipe can provide isolation

					between the kernels, decoupling their performance

					from each other. For example, a kernel producing

					460

					[bookmark: 480_0]
				

			

		

		
			
				
					ChAPter 17 ProGrAmminG For FPGAs

					data can continue to write (until the pipe capacity

					becomes full), even if a kernel consuming that data

					is busy and not ready to consume anything yet. This

					provides flexibility in execution of kernels relative

					to each other, at the cost only of some memory

					resources on the FPGA.

					Blocking and Non-blocking Pipe Accesses

					Like most FIFO interfaces, pipes have two styles of interface: blocking and

					non-blocking. Blocking accesses wait (block/pause execution!) for the

					operation to succeed, while non-blocking accesses return immediately

					and set a Boolean value indicating whether the operation succeeded.

					The definition of success is simple: If we are reading from a pipe and

					there was data available to read (the pipe wasn’t empty), then the read

					succeeds. If we are writing and the pipe wasn’t already full, then the write

					succeeds. Figure 17-33 shows both forms of access member functions of

					the pipe class. We see the member functions of a pipe that allow it to be

					written to or read from. Recall that accesses to pipes can be blocking or

					non-blocking.

					// Blocking

					T read();

					void write(const T &data);

					// Non-blocking

					T read(bool &success_code);

					void write(const T &data, bool &success_code);

					Figure 17-33. Member functions of a pipe that allow it to be written

					to or read from

					461

					www. dbooks . or g

					[bookmark: 481_0]
				

			

		

		
			
				
					ChAPter 17 ProGrAmminG For FPGAs

					Both blocking and non-blocking accesses have their uses depending

					on what our application is trying to achieve. If a kernel can’t do any more

					work until it reads data from the pipe, then it probably makes sense to use

					a blocking read. If instead a kernel wants to read data from any one of a

					set of pipes and it is not sure which one might have data available, then

					reading from pipes with a non-blocking call makes more sense. In that

					case, the kernel can read from a pipe and process the data if there was any,

					but if the pipe was empty, it can instead move on and try reading from the

					next pipe that potentially has data available.

					For More Information on Pipes

					We could only scratch the surface of pipes in this chapter, but we should

					now have an idea of what they are and the basics of how to use them. FPGA

					vendor documentation has a lot more information and many examples of

					their use in different types of applications, so we should look there if we

					think that pipes are relevant for our particular needs.

					Custom Memory Systems

					When programming for most accelerators, much of the optimization effort

					tends to be spent making memory accesses more efficient. The same

					is true of FPGA designs, particularly when input and output data pass

					through off-chip memory.

					There are two main reasons that memory accesses on an FPGA can be

					worth optimizing:

					1. To reduce required bandwidth, particularly if some

					of that bandwidth is used inefficiently

					2. To modify access patterns on a memory that is

					leading to unnecessary stalls in the spatial pipeline

					462

					[bookmark: 482_0]
					[bookmark: 482_1]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					It is worth talking briefly about stalls in the spatial pipeline. The

					compiler builds in assumptions about how long it will take to read from

					or write to specific types of memories, and it optimizes and balances the

					pipeline accordingly, hiding memory latencies in the process. But if we

					access memory in an inefficient way, we can introduce longer latencies

					and as a by-product stalls in the pipeline, where earlier stages cannot make

					progress executing because they’re blocked by a pipeline stage that is

					waiting for something (e.g., a memory access). Figure 17-34 shows such a

					situation, where the pipeline above the load is stalled and unable to make

					forward progress.

					²µ®ꢀµ¨¤§¼ꢀ·²ꢀ¶·¤µ·

					ꢆ ꢇ ꢈ

					�·¤¯¯

					�¯²¦®ꢀ�¼¦¯¨ꢀꢁ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢂ

					�·¤¯¯

					�¤·¤ꢀꢁ

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢃ

					�¤·¤ꢀꢅ

					�·¤¯¯

					¤¬·¬±ªꢀ©²µꢀ

					µ¨¤§ꢀ§¤·¤ꢀ

					¯²±ª¨µꢀ·«¤±ꢀ

					¨»³¨¦·¨§

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢄ

					�»·¨µ±¤¯ꢀ

					°¨°²µ¼

					�¤·¤ꢀꢄ

					�·¤¯¯

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢅ

					�°³·¼

					�°³·¼

					�¬³¨¯¬±¨

					¶·¤ª¨ꢀꢁ

					Figure 17-34. How a memory stall can cause earlier pipeline stages

					to stall as well

					463

					www. dbooks . or g

					[bookmark: 483_0]
					[bookmark: 483_1]
				

			

		

		
			
				
					ChAPter 17 ProGrAmminG For FPGAs

					There are a few fronts on which memory system optimizations can be

					performed. As usual, the compiler reports are our primary guide to what

					the compiler has implemented for us and what might be worth tweaking or

					improving. We list a few optimization topics here to highlight some of the

					degrees of freedom available to us. Optimization is typically available both

					through explicit controls and by modifying code to allow the compiler to

					infer the structures that we intend. The compiler static reports and vendor

					documentation are key parts of memory system optimization, sometimes

					combined with profiling tools during hardware executions to capture

					actual memory behavior for validation or for the final stages of tuning.

					1. Static coalescing: The compiler will combine

					memory accesses into a smaller number of wider

					accesses, where it can. This reduces the complexity

					of a memory system in terms of numbers of load

					or store units in the pipeline, ports on the memory

					system, the size and complexity of arbitration

					networks, and other memory system details.

					In general, we want to enable static coalescing

					wherever possible, which we can confirm through

					the compiler reports. Simplifying addressing logic in

					a kernel can sometimes be enough for the compiler

					to perform more aggressive static coalescing, so

					always check in the reports that the compiler has

					inferred what we expect!

					2. Memory access style: The compiler creates load

					or store units for memory accesses, and these are

					tailored to both the memory technology being

					accessed (e.g., on-chip vs. DDR vs. HBM) and the

					access pattern inferred from the source code (e.g.,

					streaming, dynamically coalesced/widened, or

					464

					[bookmark: 484_0]
				

			

		

		
			
				
					ChAPter 17 ProGrAmminG For FPGAs

					likely to benefit from a cache of a specific size).

					The compiler reports tell us what the compiler has

					inferred and allow us to modify or add controls to

					our code, where relevant, to improve performance.

					3. Memory system structure: Memory systems (both

					on- and off-chip) can have banked structures

					and numerous optimizations implemented by

					the compiler. There are many controls and mode

					modifications that can be used to control these

					structures and to tune specific aspects of the spatial

					implementation.

					Some Closing Topics

					When talking with developers who are getting started with FPGAs, we find

					that it often helps to understand at a high level the components that make

					up the device and also to mention clock frequency which seems to be a

					point of confusion. We close this chapter with these topics.

					FPGA Building Blocks

					To help with an understanding of the tool flows (particularly compile

					time), it is worth mentioning the building blocks that make up an

					FPGA. These building blocks are abstracted away through DPC++

					and SYCL, and knowledge of them plays no part in typical application

					development (at least in the sense of making code functional). Their

					existence does, however, factor into development of an intuition for spatial

					architecture optimization and tool flows, and occasionally in advanced

					optimizations when choosing the ideal data type for our application, for

					example.

					465

					www. dbooks . or g

					[bookmark: 485_0]
					[bookmark: 485_1]
					[bookmark: 485_2]
				

			

		

		
			
				
					ChAPter 17 ProGrAmminG For FPGAs

					A very simplified modern FPGA device consists of five basic elements.

					1. Look-up tables: Fundamental blocks that have a

					few binary input wires and produce a binary output.

					The output relative to the inputs is defined through

					the entries programmed into a look-up table. These

					are extremely primitive blocks, but there are many

					of them (millions) on a typical modern FPGA used

					for compute. These are the basis on which much of

					our design is implemented!

					2. Math engines: For common math operations such as

					addition or multiplication of single-precision floating-

					point numbers, FPGAs have specialized hardware

					to make those operations very efficient. A modern

					FPGA has thousands of these blocks—some devices

					have more than 8000—such that at least these many

					floating-point primitive operations can be performed

					in parallel every clock cycle! Most FPGAs name these

					math engines Digital Signal Processors (DSPs).

					3. On-chip memory: This is a distinguishing aspect of

					FPGAs vs. other accelerators, and memories come

					in two flavors (more actually, but we won’t get into

					those here): (1) registers that are used to pipeline

					between operations and some other purposes and (2)

					block memories that provide small random-access

					memories spread across the device. A modern FPGA

					can have on the order of millions of register bits and

					more than 10,000 20 Kbit RAM memory blocks. Since

					each of those can be active every clock cycle, the

					result is significant on-chip memory capacity and

					bandwidth, when used efficiently.

					466

					[bookmark: 486_0]
				

			

		

		
			
				
					ChAPter 17 ProGrAmminG For FPGAs

					4. Interfaces to off-chip hardware: FPGAs have

					evolved in part because of their very flexible

					transceivers and input/output connectivity that

					allows communications with almost anything

					ranging from off-chip memories to network

					interfaces and beyond.

					5. Routing fabric between all of the other elements:

					There are many of each element mentioned in

					the preceding text on a typical FPGA, and the

					connectivity between them is not fixed. A complex

					programmable routing fabric allows signals to pass

					between the fine-grained elements that make up an

					FPGA.

					Given the numbers of blocks on an FPGA of each specific type (some

					blocks are counted in the millions) and the fine granularity of those

					blocks such as look-up tables, the compile times seen when generating

					FPGA configuration bitstreams may make more sense. Not only does

					functionality need to be assigned to each fine-grained resource but routing

					needs to be configured between them. Much of the compile time comes

					from finding a first legal mapping of our design to the FPGA fabric, before

					optimizations even start!

					Clock Frequency

					FPGAs are extremely flexible and configurable, and that configurability

					comes with some cost to the frequency that an FPGA runs at compared

					with an equivalent design hardened into a CPU or any other fixed compute

					architecture. But this is not a problem! The spatial architecture of an

					FPGA more than makes up for the clock frequency because there are so

					many independent operations occurring simultaneously, spread across

					the area of the FPGA. Simply put, the frequency of an FPGA is lower

					467

					www. dbooks . or g

					[bookmark: 487_0]
					[bookmark: 487_1]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					than other architectures because of the configurable design, but more

					happens per clock cycle which balances out the frequency. We should

					compare compute throughput (e.g., in operations per second) and not raw

					frequency when benchmarking and comparing accelerators.

					This said, as we approach 100% utilization of the resources on an

					FPGA, operating frequency may start to decrease. This is primarily a result

					of signal routing resources on the device becoming overused. There are

					ways to remedy this, typically at the cost of increased compile time. But

					it’s best to avoid using more than 80–90% of the resources on an FPGA for

					most applications unless we are willing to dive into details to counteract

					frequency decrease.

					Rule of thumb try not to exceed 90% of any resources on an FPGA

					and certainly not more than 90% of multiple resources. exceeding

					may lead to exhaustion of routing resources which leads to lower

					operating frequencies, unless we are willing to dive into lower-level

					FPGA details to counteract this.

					Summary

					In this chapter, we have introduced how pipelining maps an algorithm to

					the FPGA’s spatial architecture. We have also covered concepts that can

					help us to decide whether an FPGA is useful for our applications and that

					can help us get up and running developing code faster. From this starting

					point, we should be in good shape to browse vendor programming and

					optimization manuals and to start writing FPGA code! FPGAs provide

					performance and enable applications that wouldn’t make sense on other

					accelerators, so we should keep them near the front of our mental toolbox!

					468

					[bookmark: 488_0]
				

			

		

		
			
				
					
				
			

			
				
					ChAPter 17 ProGrAmminG For FPGAs

					Open Access This chapter is licensed under the terms

					of the Creative Commons Attribution 4.0 International

					License (http://creativecommons.org/licenses/by/4.0/), which permits

					use, sharing, adaptation, distribution and reproduction in any medium or

					format, as long as you give appropriate credit to the original author(s) and

					the source, provide a link to the Creative Commons license and indicate if

					changes were made.

					The images or other third party material in this chapter are included

					in the chapter’s Creative Commons license, unless indicated otherwise

					in a credit line to the material. If material is not included in the chapter’s

					Creative Commons license and your intended use is not permitted by

					statutory regulation or exceeds the permitted use, you will need to obtain

					permission directly from the copyright holder.

					469

					www. dbooks . or g

				

			

		

		
			
				
					
				
			

			
				
					CHAPTER 18

					Libraries

					We have spent the entire book promoting the art of writing our own code.

					Now we finally acknowledge that some great programmers have already

					written code that we can just use. Libraries are the best way to get our work

					done. This is not a case of being lazy—it is a case of having better things to

					do than reinvent the work of others. This is a puzzle piece worth having.

					The open source DPC++ project includes some libraries. These

					libraries can help us continue to use libstdc++, libc++, and MSVC library

					functions even within our kernel code. The libraries are included as part of

					DPC++ and the oneAPI products from Intel. These libraries are not tied to

					the DPC++ compiler so they can be used with any SYCL compiler.

					The DPC++ library provides an alternative for programmers who create

					heterogeneous applications and solutions. Its APIs are based on familiar

					standards—C++ STL, Parallel STL (PSTL), and SYCL—to provide high-

					productivity APIs to programmers. This can minimize programming effort

					across CPUs, GPUs, and FPGAs while leading to high-performance parallel

					applications that are portable.

					© Intel Corporation 2021

					J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-5574-2_18

					471

					[bookmark: 490_0]
				

			

		

		
			
				
					Chapter 18 Libraries

					The SYCL standard defines a rich set of built-in functions that provide

					functionality, for host and device code, worth considering as well. DPC++

					and many SYCL implementations implement key math built-ins with math

					libraries.

					The libraries and built-ins discussed within this chapter are compiler

					agnostic. In other words, they are equally applicable to DPC++ compilers

					or SYCL compilers. The fpga_device_policyclass is a DPC++ feature for

					FPGA support.

					Since there is overlap in naming and functionality, this chapter will

					start with a brief introduction to the SYCL built-in functions.

					Built-In Functions

					DPC++ provides a rich set of SYCL built-in functions with respect to

					various data types. These built-in functions are available in the sycl

					namespace on host and device with low-, medium-, and high-precision

					support for the target devices based on compiler options, for example,

					the -mfma, -ffast-math, and -ffp-contract=fastprovided by the DPC++

					compiler. These built-in functions on host and device can be classified as

					in the following:

					•

					•

					•

					•

					•

					Floating-point math functions: asin, acos, log, sqrt,

					floor, etc. listed in Figure 18-2.

					Integer functions: abs, max, min, etc. listed in

					Figure 18-3.

					Common functions: clamp, smoothstep, etc. listed in

					Figure 18-4.

					Geometric functions: cross, dot, distance, etc. listed

					in Figure 18-5.

					Relational functions: isequal, isless, isfinite, etc.

					listed in Figure 18-6.

					472

					www. dbooks . or g

					[bookmark: 491_0]
					[bookmark: 491_1]
				

			

		

		
			
				
					Chapter 18 Libraries

					If a function is provided by the C++ std library, as listed in Figure 18-8, as

					well as a SYCL built-in function, then DPC++ programmers are allowed to

					use either. Figure 18-1 demonstrates the C++ std::logfunction and SYCL

					built-in sycl::logfunction for host and device, and both functions produce

					the same numeric results. In the example, the built-in relational function

					sycl::isequalis used to compare the results of std:logand sycl:log.

					constexpr int size = 9;

					std::array<double, size> A;

					std::array<double, size> B;

					bool pass = true;

					for (int i = 0; i < size; ++i) { A[i] = i; B[i] = i; }

					queue Q;

					range sz{size};

					buffer<double> bufA(A);

					buffer<double> bufB(B);

					buffer<bool> bufP(&pass, 1);

					Q.submit([&](handler &h) {

					accessor accA{ bufA, h};

					accessor accB{ bufB, h};

					accessor accP{ bufP, h};

					h.parallel_for(size, [=](id<1> idx) {

					accA[idx] = std::log(accA[idx]);

					accB[idx] = sycl::log(accB[idx]);

					if (!sycl::isequal(accA[idx], accB[idx])) {

					accP[0] = false;

					}

					});

					});

					Figure 18-1. Using std::log and sycl::log

					473

					[bookmark: 492_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 18 Libraries

					In addition to the data types supported in SYCL, the DPC++

					device library provides support for std:complexas a data type and the

					corresponding math functions defined in the C++ std library.

					Use the sycl:: Prefix with Built-In Functions

					The SYCL built-in functions should be invoked with an explicit

					sycl::prepended to the name. With the current SYCL specification,

					calling just sqrt()is not guaranteed to invoke the SYCL built-in on all

					implementations even if “using namespace sycl;” has been used.

					sYCL built-in functions should always be invoked with an explicit

					sycl::in front of the built-in name. Failure to follow this advice may

					result in strange and non-portable results.

					If a built-in function name conflicts with a non-templated function

					in our application, in many implementations (including DPC++), our

					function will prevail, thanks to C++ overload resolution rules that prefer

					a non-templated function over a templated one. However, if our code has

					a function name that is the same as a built-in name, the most portable

					thing to do is either avoid using namespace sycl;or make sure no actual

					conflict happens. Otherwise, some SYCL compilers will refuse to compile

					the code due to an unresolvable conflict within their implementation.

					Such a conflict will not be silent. Therefore, if our code compiles today, we

					can safely ignore the possibility of future problems.

					474

					www. dbooks . or g

					[bookmark: 493_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 18 Libraries

					Figure 18-2. Built-in math functions

					475

					[bookmark: 494_0]
					[bookmark: 494_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 18 Libraries

					Figure 18-3. Built-in integer functions

					476

					www. dbooks . or g

					[bookmark: 495_0]
					[bookmark: 495_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 18 Libraries

					Figure 18-4. Built-in common functions

					Figure 18-5. Built-in geometric functions

					477

					[bookmark: 496_0]
					[bookmark: 496_1]
					[bookmark: 496_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 18 Libraries

					Figure 18-6. Built-in relational functions

					DPC++ Library

					The DPC++ library consists of the following components:

					•

					A set of tested C++ standard APIs—we simply need to

					include the corresponding C++ standard header files

					and use the stdnamespace.

					•

					Parallel STL that includes corresponding header files.

					We simply use #include <dpstd/...>to include them.

					The DPC++ library uses namespace dpstdfor the

					extended API classes and functions.

					478

					www. dbooks . or g

					[bookmark: 497_0]
					[bookmark: 497_1]
					[bookmark: 497_2]
				

			

		

		
			
				
					Chapter 18 Libraries

					Standard C++ APIs in DPC++

					The DPC++ library contains a set of tested standard C++ APIs. The basic

					functionality for a number of C++ standard APIs has been developed so

					that these APIs can be employed in device kernels similar to how they are

					employed in code for a typical C++ host application. Figure 18-7 shows an

					example of how to use std::swapin device code.

					class KernelSwap;

					std::array <int,2> arr{8,9};

					buffer<int> buf{arr};

					{

					host_accessor host_A(buf);

					std::cout << "Before: " << host_A[0] << ", " << host_A[1] << "\n";

					} // End scope of host_A so that upcoming kernel can operate on buf

					queue Q;

					Q.submit([&](handler &h) {

					accessor A{buf, h};

					h.single_task([=]() {

					// Call std::swap!

					std::swap(A[0], A[1]);

					});

					});

					host_accessor host_B(buf);

					std::cout << "After: " << host_B[0] << ", " << host_B[1] << "\n";

					Figure 18-7. Using std::swap in device code

					479

					[bookmark: 498_0]
					[bookmark: 498_1]
				

			

		

		
			
				
					Chapter 18 Libraries

					We can use the following command to build and run the program

					(assuming it resides in the stdswap.cppfile):

					dpcpp –std=c++17 stdswap.cpp –o stdswap.exe

					./stdswap.exe

					The printed result is:

					8, 9

					9, 8

					Figure 18-8 lists C++ standard APIs with “Y” to indicate those that have

					been tested for use in DPC++ kernels for CPU, GPU, and FPGA devices,

					at the time of this writing. A blank indicates incomplete coverage (not all

					three device types) at the time of publication for this book. A table is also

					included as part of the online DPC++ language reference guide and will be

					updated over time—the library support in DPC++ will continue to expand

					its support.

					In the DPC++ library, some C++ stdfunctions are implemented based

					on their corresponding built-in functions on the device to achieve the

					same level of performance as the SYCL versions of these functions.

					480

					www. dbooks . or g

				

			

		

		
			
				
					
				
			

			
				
					Chapter 18 Libraries

					VWGꢀꢀH[S

					VWGꢀꢀH[Sꢁ

					VWGꢀꢀH[SPꢁ

					ꢀ

					ꢀ

					ꢀ

					ꢀΪΪꢁ��������ꢁꢂꢃꢄ

					VWGꢀꢀH[WHQW

					VWGꢀꢀIGLP

					VWGꢀꢀIPRG

					VWGꢀꢀIRUZDUG

					VWGꢀꢀIUH[S

					VWGꢀꢀJUHDWHU

					VWGꢀꢀJUHDWHUBHTXDO

					VWGꢀꢀK\SRW

					VWGꢀꢀLORJE

					VWGꢀꢀLQLWLDOL]HUBOLVW

					VWGꢀꢀLQWHJUDOBFRQVWDQW

					VWGꢀꢀLVBDULWKPHWLF

					VWGꢀꢀLVBDVVLJQDEOH

					VWGꢀꢀLVBEDVHBRI

					VWGꢀꢀLVBEDVHBRIBXQLRQ

					VWGꢀꢀLVBFRPSRXQG

					VWGꢀꢀLVBFRQVW

					VWGꢀꢀLVBFRQVWUXFWLEOH

					VWGꢀꢀLVBFRQYHUWLEOH

					VWGꢀꢀLVBFRS\BDVVLJQDEOH

					VWGꢀꢀLVBFRS\BFRQVWUXFWLEOH

					VWGꢀꢀLVBGHIDXOWBFRQVWUXFWLEOH

					VWGꢀꢀLVBGHVWUXFWLEOH

					VWGꢀꢀLVBHPSW\

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					VWGꢀꢀDFRV

					VWGꢀꢀDFRVK

					VWGꢀꢀDGGBFRQVW

					VWGꢀꢀDGGBFY

					VWGꢀꢀDGGBYRODWLOH

					VWGꢀꢀDOLJQPHQWBRI

					VWGꢀꢀDUUD\

					ꢅ

					ꢅ

					ꢅ

					ꢅ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢅ

					ꢅ

					ꢀ

					ꢀ

					ꢀ

					ꢅ

					ꢅ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					VWGꢀꢀDVLQ

					VWGꢀꢀLVBIXQGDPHQWDO

					VWGꢀꢀLVBOLWHUDOBW\SH

					VWGꢀꢀLVBPHPEHUBSRLQWHU

					VWGꢀꢀLVBPRYHBDVVLJQDEOH

					VWGꢀꢀLVBPRYHBFRQVWUXFWLEOH ꢀ

					VWGꢀꢀLVBREMHFW

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					VWGꢀꢀLVBSRG

					VWGꢀꢀLVBUHIHUHQFH

					VWGꢀꢀLVBIXQGDPHQWDO

					VWGꢀꢀLVBOLWHUDOBW\SH

					VWGꢀꢀLVBPHPEHUBSRLQWHU

					VWGꢀꢀLVBPRYHBDVVLJQDEOH

					VWGꢀꢀLVBPRYHBFRQVWUXFWLEOH ꢀ

					VWGꢀꢀLVBVDPH

					VWGꢀꢀLVBVFDODU

					VWGꢀꢀLVBVLJQHG

					VWGꢀꢀLVBVWDQGDUGBOD\RXW

					VWGꢀꢀLVBWULYLDO

					VWGꢀꢀLVBWULYLDOO\BDVVLJQDEOH

					VWGꢀꢀLVBREMHFW

					VWGꢀꢀLVBSRG

					VWGꢀꢀDVLQK

					VWGꢀꢀDVVHUW

					VWGꢀꢀDWDQ

					VWGꢀꢀDWDQꢁ

					VWGꢀꢀDWDQK

					VWGꢀꢀELQDU\BQHJDWH

					VWGꢀꢀELQDU\BVHDUFK

					VWGꢀꢀELWBDQG

					VWGꢀꢀELWBQRW

					VWGꢀꢀELWBRU

					VWGꢀꢀELWB[RU

					VWGꢀꢀFEUW

					VWGꢀꢀFRPPRQBW\SH

					VWGꢀꢀFRPSOH[

					VWGꢀꢀFRQGLWLRQDO

					VWGꢀꢀFRV

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					VWGꢀꢀLVBWULYLDOO\BFRQVWUXFWLEOHꢀ

					VWGꢀꢀLVBWULYLDOO\BFRS\DEOH

					VWGꢀꢀLVBXQVLJQHG

					VWGꢀꢀLVBYRODWLOH

					VWGꢀꢀOGH[S

					VWGꢀꢀOHVV

					VWGꢀꢀOHVVBHTXDO

					VWGꢀꢀOJDPPD

					VWGꢀꢀORJ

					VWGꢀꢀORJꢁꢂ

					VWGꢀꢀORJꢁS

					VWGꢀꢀORJꢃ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					VWGꢀꢀORJE

					VWGꢀꢀFRVK

					VWGꢀꢀGHFD\

					VWGꢀꢀORJLFDOBDQG

					VWGꢀꢀORJLFDOBQRW

					VWGꢀꢀORJLFDOBRU

					VWGꢀꢀORZHUBERXQG

					VWGꢀꢀPLQXV

					VWGꢀꢀPRGI

					VWGꢀꢀPRGXOXV

					VWGꢀꢀPRYH

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					VWGꢀꢀGHFOYDO

					VWGꢀꢀGLYLGHV

					VWGꢀꢀHQDEOHBLI

					VWGꢀꢀHTXDOBUDQJH

					VWGꢀꢀHTXDOBWR

					VWGꢀꢀHUI

					ꢀ

					ꢀ

					VWGꢀꢀHUIF

					Figure 18-8. Library support with CPU/GPU/FPGA coverage (at

					time of book publication)

					481

					[bookmark: 500_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 18 Libraries

					VWGꢀꢀPRYHBLIBQRH[FHSW

					VWGꢀꢀPXOWLSOLHV

					VWGꢀꢀQHJDWH

					VWGꢀꢀQH[WDIWHU

					VWGꢀꢀQRWBHTXDOBWR

					VWGꢀꢀQRWꢁꢂꢃ

					VWGꢀꢀQXPHULFBOLPLWV

					VWGꢀꢀSDLU

					VWGꢀꢀSOXV

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					VWGꢀꢀUHIHUHQFHBZUDSSHU

					VWGꢀꢀUHPDLQGHU

					VWGꢀꢀUHPRYHBDOOBH[WHQWV

					VWGꢀꢀUHPRYHBFRQVW

					VWGꢀꢀUHPRYHBFY

					VWGꢀꢀUHPRYHBH[WHQW

					VWGꢀꢀUHPRYHBYRODWLOH

					VWGꢀꢀUHPTXR

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					ꢀ

					VWGꢀꢀVLQ

					VWGꢀꢀSRZ

					VWGꢀꢀUDQN

					VWGꢀꢀVLQK

					VWGꢀꢀVTUW

					VWGꢀꢀUDWLR

					VWGꢀꢀVZDS

					VWGꢀꢀUHIꢁFUHI

					Figure 18.8. (continued)

					The tested standard C++ APIs are supported in libstdc++(GNU) with

					gcc7.4.0 and libc++(LLVM) with clang10.0 and MSVC Standard C++

					Library with Microsoft Visual Studio 2017 for the host CPU as well.

					On Linux, GNU libstdc++is the default C++ standard library for

					the DPC++ compiler, so no compilation or linking option is required.

					If we want to use libc++, use the compile options -stdlib=libc++

					-nostdinc++to leverage libc++and to not include C++ std headers from

					the system. The DPC++ compiler has been verified using libc++in DPC++

					kernels on Linux, but the DPC++ runtime needs to be rebuilt with libc++

					instead of libstdc++. Details are in https://intel.github.io/llvm-

					docs/GetStartedGuide.html#build-dpc-toolchain-with-libc-library.

					Because of these extra steps, libc++is not the recommended C++ standard

					library for us to use in general.

					On FreeBSD, libc++is the default standard library, and

					the -stdlib=libc++option is not required. More details are in https://

					libcxx.llvm.org/docs/UsingLibcxx.html. On Windows, only the MSVC

					C++ library can be used.

					to achieve cross-architecture portability, if a std function is not

					marked with “Y” in Figure 18-8, we need to keep portability in mind

					when we write device functions!

					482

					www. dbooks . or g

				

			

		

		
			
				
					
				
			

			
				
					Chapter 18 Libraries

					DPC++ Parallel STL

					Parallel STL is an implementation of the C++ standard library algorithms

					with support for execution policies, as specified in the ISO/IEC 14882:2017

					standard, commonly called C++17. The existing implementation also

					supports the unsequenced execution policy specified in Parallelism TS

					version 2 and proposed for the next version of the C++ standard in the C++

					working group paper P1001R1.

					When using algorithms and execution policies, specify the namespace

					std::executionif there is no vendor-specific implementation of the

					C++17 standard library or pstl::executionotherwise.

					For any of the implemented algorithms, we can pass one of the

					values seq, unseq, par, or par_unseqas the first parameter in a call to the

					algorithm to specify the desired execution policy. The policies have the

					following meanings:

					Execution Policy

					Meaning

					seq

					sequential execution.

					unseq

					Unsequenced siMD execution. this policy requires that all

					functions provided are safe to execute in siMD.

					par

					parallel execution by multiple threads.

					par_unseq

					Combined effect of unseqand par.

					Parallel STL for DPC++ is extended with support for DPC++ devices

					using special execution policies. The DPC++ execution policy specifies

					where and how a Parallel STL algorithm runs. It inherits a standard C++

					execution policy, encapsulates a SYCL device or queue, and allows us to

					set an optional kernel name. DPC++ execution policies can be used with

					all standard C++ algorithms that support execution policies according to

					the C++17 standard.

					483

					[bookmark: 502_0]
				

			

		

		
			
				
					Chapter 18 Libraries

					DPC++ Execution Policy

					Currently, only the parallel unsequenced policy (par_unseq) is supported

					by the DPC++ library. In order to use the DPC++ execution policy, there

					are three steps:

					1. Add #include <dpstd/execution>into our code.

					2. Create a policy object by providing a standard

					policy type, a class type for a unique kernel name

					as a template argument (optional), and one of the

					following constructor arguments:

					•

					•

					•

					•

					A SYCL queue

					A SYCL device

					A SYCL device selector

					An existing policy object with a different kernel

					name

					3. Pass the created policy object to a Parallel STL

					algorithm.

					A dpstd::execution::default_policyobject is a predefined device_

					policycreated with a default kernel name and default queue. This can be

					used to create custom policy objects or passed directly when invoking an

					algorithm if the default choices are sufficient.

					Figure 18-9 shows examples that assume use of the using namespace

					dpstd::execution;directive when referring to policyclasses and

					functions.

					484

					www. dbooks . or g

					[bookmark: 503_0]
				

			

		

		
			
				
					Chapter 18 Libraries

					auto policy_b =

					device_policy<parallel_unsequenced_policy, class PolicyB>

					{sycl::device{sycl::gpu_selector{}}};

					std::for_each(policy_b, …);

					auto policy_c =

					device_policy<parallel_unsequenced_policy, class PolicyС>

					{sycl::default_selector{}};

					std::for_each(policy_c, …);

					auto policy_d = make_device_policy<class PolicyD>(default_policy);

					std::for_each(policy_d, …);

					auto policy_e = make_device_policy<class PolicyE>(sycl::queue{});

					std::for_each(policy_e, …);

					Figure 18-9. Creating execution policies

					FPGA Execution Policy

					The fpga_device_policyclass is a DPC++ policy tailored to achieve

					better performance of parallel algorithms on FPGA hardware devices. Use

					the policy when running the application on FPGA hardware or an FPGA

					emulation device:

					1. Define the _PSTL_FPGA_DEVICEmacro to run on

					FPGA devices and additionally _PSTL_FPGA_EMUto

					run on an FPGA emulation device.

					2. Add #include <dpstd/execution> to our code.

					3. Create a policy object by providing a class type for

					a unique kernel name and an unroll factor (see

					Chapter 17) as template arguments (both optional)

					and one of the following constructor arguments:

					•

					A SYCL queue constructed for the FPGA selector (the

					behavior is undefined with any other device type)

					•

					An existing FPGA policy object with a different

					kernel name and/or unroll factor

					4. Pass the created policy object to a Parallel STL algorithm.

					485

					[bookmark: 504_0]
					[bookmark: 504_1]
				

			

		

		
			
				
					Chapter 18 Libraries

					The default constructor of fpga_device_policycreates an object with

					a SYCL queue constructed for fpga_selector, or for fpga_emulator_

					selectorif _PSTL_FPGA_EMUis defined.

					dpstd::execution::fpga_policyis a predefined object of the fpga_

					device_policyclass created with a default kernel name and default unroll

					factor. Use it to create customized policy objects or pass it directly when

					invoking an algorithm.

					Code in Figure 18-10 assumes using namespace dpstd::execution;

					for policies and using namespace sycl;for queues and device selectors.

					Specifying an unroll factor for a policy enables loop unrolling in the

					implementation of algorithms. The default value is 1. To find out how to

					choose a better value, see Chapter 17.

					auto fpga_policy_a = fpga_device_policy<class FPGAPolicyA>{};

					auto fpga_policy_b = make_fpga_policy(queue{intel::fpga_selector{}});

					constexpr auto unroll_factor = 8;

					auto fpga_policy_c =

					make_fpga_policy<class FPGAPolicyC, unroll_factor>(fpga_policy);

					Figure 18-10. Using FPGA policy

					Using DPC++ Parallel STL

					In order to use the DPC++ Parallel STL, we need to include Parallel STL

					header files by adding a subset of the following set of lines. These lines are

					dependent on the algorithms we intend to use:

					• #include <dpstd/algorithm>

					• #include <dpstd/numeric>

					• #include <dpstd/memory>

					486

					www. dbooks . or g

					[bookmark: 505_0]
					[bookmark: 505_1]
				

			

		

		
			
				
					Chapter 18 Libraries

					dpstd::beginand dpstd::endare special helper functions that allow

					us to pass SYCL buffers to Parallel STL algorithms. These functions accept

					a SYCL buffer and return an object of an unspecified type that satisfies the

					following requirements:

					•

					Is CopyConstructible, CopyAssignable, and

					comparable with operators ==and !=.

					•

					The following expressions are valid: a + n, a – n, and

					a – b, where aand bare objects of the type and nis an

					integer value.

					•

					Has a get_buffermethod with no arguments.

					The method returns the SYCL buffer passed to

					dpstd::beginand dpstd::endfunctions.

					To use these helper functions, add #include <dpstd/iterators>to

					our code. See the code in Figures 18-11 and 18-12 using the std::fill

					function as examples that use the begin/end helpers.

					#include <dpstd/execution>

					#include <dpstd/algorithm>

					#include <dpstd/iterators>

					sycl::queue Q;

					sycl::buffer<int> buf { 1000 };

					auto buf_begin = dpstd::begin(buf);

					auto buf_end

					= dpstd::end(buf);

					auto policy = dpstd::execution::make_device_policy<class fill>(Q);

					std::fill(policy, buf_begin, buf_end, 42);

					// each element of vec equals to 42

					Figure 18-11. Using std::fill

					487

					[bookmark: 506_0]
					[bookmark: 506_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 18 Libraries

					REDUCE DATA COPYING BETWEEN THE HOST AND DEVICE

					parallel stL algorithms can be called with ordinary (host-side) iterators, as

					seen in the code example in Figure 18-11.

					in this case, a temporary sYCL buffer is created, and the data is copied to

					this buffer. after processing of the temporary buffer on a device is complete,

					the data is copied back to the host. Working directly with existing sYCL

					buffers, where possible, is recommended to reduce data movement between

					the host and device and any unnecessary overhead of buffer creations and

					destructions.

					#include <dpstd/execution>

					#include <dpstd/algorithm>

					std::vector<int> v(1000000);

					std::fill(dpstd::execution::default_policy, v.begin(), v.end(), 42);

					// each element of vec equals to 42

					Figure 18-12. Using std::fill with default policy

					Figure 18-13 shows an example which performs a binary search of the

					input sequence for each of the values in the search sequence provided. As

					the result of a search for the ith element of the search sequence, a Boolean

					value indicating whether the search value was found in the input sequence

					is assigned to the ith element of the result sequence. The algorithm returns

					an iterator that points to one past the last element of the result sequence

					that was assigned a result. The algorithm assumes that the input sequence

					has been sorted by the comparator provided. If no comparator is provided,

					then a function object that uses operator<to compare the elements will

					be used.

					488

					www. dbooks . or g

					[bookmark: 507_0]
					[bookmark: 507_1]
				

			

		

		
			
				
					Chapter 18 Libraries

					The complexity of the preceding description highlights that we

					should leverage library functions where possible, instead of writing our

					own implementations of similar algorithms which may take significant

					debugging and tuning time. Authors of the libraries that we can take

					advantage of are often experts in the internals of the device architectures to

					which they are coding, and may have access to information that we do not,

					so we should always leverage optimized libraries when they are available.

					The code example shown in Figure 18-13 demonstrates the three

					typical steps when using a DPC++ Parallel STL algorithm:

					•

					•

					•

					Create DPC++ iterators.

					Create a named policy from an existing policy.

					Invoke the parallel algorithm.

					The example in Figure 18-13 uses the dpstd::binary_search

					algorithm to perform binary search on a CPU, GPU, or FPGA, based on our

					device selection.

					489

					[bookmark: 508_0]
				

			

		

		
			
				
					Chapter 18 Libraries

					#include <dpstd/execution>

					#include <dpstd/algorithm>

					#include <dpstd/iterator>

					buffer<uint64_t, 1> kB{ range<1>(10) };

					buffer<uint64_t, 1> vB{ range<1>(5) };

					buffer<uint64_t, 1> rB{ range<1>(5) };

					accessor k{kB};

					accessor v{vB};

					// create dpc++ iterators

					auto k_beg = dpstd::begin(kB);

					auto k_end = dpstd::end(kB);

					auto v_beg = dpstd::begin(vB);

					auto v_end = dpstd::end(vB);

					auto r_beg = dpstd::begin(rB);

					// create named policy from existing one

					auto policy = dpstd::execution::make_device_policy<class bSearch>

					(dpstd::execution::default_policy);

					// call algorithm

					dpstd::binary_search(policy, k_beg, k_end, v_beg, v_end, r_beg);

					// check data

					accessor r{rB};

					if ((r[0] == false) && (r[1] == true) &&

					(r[2] == false) && (r[3] == true) && (r[4] == true)) {

					std::cout << "Passed.\nRun on "

					<< policy.queue().get_device().get_info<info::device::name>()

					<< "\n";

					} else

					std::cout << "failed: values do not match.\n";

					Figure 18-13. Using binary_search

					Using Parallel STL with USM

					The following examples describe two ways to use the Parallel STL

					algorithms in combination with USM:

					•

					•

					Through USM pointers

					Through USM allocators

					If we have a USM allocation, we can pass the pointers to the start and

					(one past the) end of the allocation to a parallel algorithm. It is important

					to be sure that the execution policy and the allocation itself were created

					for the same queue or context, to avoid undefined behavior at runtime.

					490

					www. dbooks . or g

					[bookmark: 509_0]
					[bookmark: 509_1]
				

			

		

		
			
				
					Chapter 18 Libraries

					If the same allocation is to be processed by several algorithms, either

					use an in-order queue or explicitly wait for completion of each algorithm

					before using the same allocation in the next one (this is typical operation

					ordering when using USM). Also wait for completion before accessing the

					data on the host, as shown in Figure 18-14.

					Alternatively, we can use std::vectorwith a USM allocator as shown

					in Figure 18-15.

					#include <dpstd/execution>

					#include <dpstd/algorithm>

					sycl::queue q;

					const int n = 10;

					int* d_head = static_cast<int*>(

					sycl::malloc_device(n * sizeof(int),

					q.get_device(),

					q.get_context()));

					std::fill(dpstd::execution::make_device_policy(q),

					d_head, d_head + n, 78);

					q.wait();

					sycl::free(d_head, q.get_context());

					Figure 18-14. Using Parallel STL with a USM pointer

					#include <dpstd/execution>

					#include <dpstd/algorithm>

					sycl::queue Q;

					const int n = 10;

					sycl::usm_allocator<int, sycl::usm::alloc::shared>

					alloc(Q.get_context(), Q.get_device());

					std::vector<int, decltype(alloc)> vec(n, alloc);

					std::fill(dpstd::execution::make_device_policy(Q),

					vec.begin(), vec.end(), 78);

					Q.wait();

					Figure 18-15. Using Parallel STL with a USM allocator

					491

					[bookmark: 510_0]
					[bookmark: 510_1]
					[bookmark: 510_2]
				

			

		

		
			
				
					Chapter 18 Libraries

					Error Handling with DPC++ Execution Policies

					As detailed in Chapter 5, the DPC++ error handling model supports two

					types of errors. With synchronous errors, the runtime throws exceptions,

					while asynchronous errors are only processed in a user-supplied error

					handler at specified times during program execution.

					For Parallel STL algorithms executed with DPC++ policies, handling

					of all errors, synchronous or asynchronous, is a responsibility of the caller.

					Specifically

					•

					•

					No exceptions are thrown explicitly by algorithms.

					Exceptions thrown by the runtime on the host CPU,

					including DPC++ synchronous exceptions, are passed

					through to the caller.

					•

					DPC++ asynchronous errors are not handled by the

					Parallel STL, so must be handled (if any handling is

					desired) by the calling application.

					To process DPC++ asynchronous errors, the queue associated with

					a DPC++ policy must be created with an error handler object. The

					predefined policy objects (default_policyand others) have no error

					handlers, so we should create our own policies if we need to process

					asynchronous errors.

					Summary

					The DPC++ library is a companion to the DPC++ compiler. It helps us with

					solutions for portions of our heterogeneous applications, using pre-built

					and tuned libraries for common functions and parallel patterns. The

					DPC++ library allows explicit use of the C++ STL API within kernels, it

					streamlines cross-architecture programming with Parallel STL algorithm

					extensions, and it increases the successful application of parallel

					492

					www. dbooks . or g

					[bookmark: 511_0]
					[bookmark: 511_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 18 Libraries

					algorithms with custom iterators. In addition to support for familiar

					libraries (libstdc++, libc++, MSVS), DPC++ also provides full support for

					SYCL built-in functions. This chapter overviewed options for leveraging

					the work of others instead of having to write everything ourselves, and

					we should use that approach wherever practical to simplify application

					development and often to realize superior performance.

					Open Access This chapter is licensed under the terms

					of the Creative Commons Attribution 4.0 International

					License (http://creativecommons.org/licenses/by/4.0/), which permits

					use, sharing, adaptation, distribution and reproduction in any medium or

					format, as long as you give appropriate credit to the original author(s) and

					the source, provide a link to the Creative Commons license and indicate if

					changes were made.

					The images or other third party material in this chapter are included

					in the chapter’s Creative Commons license, unless indicated otherwise

					in a credit line to the material. If material is not included in the chapter’s

					Creative Commons license and your intended use is not permitted by

					statutory regulation or exceeds the permitted use, you will need to obtain

					permission directly from the copyright holder.

					493

				

			

		

		
			
				
					
				
			

			
				
					CHAPTER 19

					Memory Model

					and Atomics

					Memory consistency is not an esoteric concept if we want to be good

					parallel programmers. It is a critical piece of our puzzle, helping us to

					ensure that data is where we need it when we need it and that its values are

					what we are expecting. This chapter brings to light key things we need to

					master in order to ensure our program hums along correctly. This topic is

					not unique to SYCL or to DPC++.

					Having a basic understanding of the memory (consistency) model of

					a programming language is necessary for any programmer who wants to

					allow concurrent updates to memory (whether those updates originate from

					multiple work-items in the same kernel, multiple devices, or both). This is

					true regardless of how memory is allocated, and the content of this chapter is

					equally important to us whether we choose to use buffers or USM allocations.

					© Intel Corporation 2021

					J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-5574-2_19

					495

					www. dbooks . or g

					[bookmark: 513_0]
					[bookmark: 513_1]
				

			

		

		
			
				
					Chapter 19 MeMory Model and atoMiCs

					In previous chapters, we have focused on the development of

					simple kernels, where program instances either operate on completely

					independent data or share data using structured communication patterns

					that can be expressed directly using language and/or library features.

					As we move toward writing more complex and realistic kernels, we are

					likely to encounter situations where program instances may need to

					communicate in less structured ways—understanding how the memory

					model relates to DPC++ language features and the capabilities of the

					hardware we are targeting is a necessary precondition for designing

					correct, portable, and efficient programs.

					The memory consistency model of standard C++ is sufficient for

					writing applications that execute entirely on the host device, but is

					modified by DPC++ in order to address complexities that may arise

					when programming heterogeneous systems and when talking about

					program instances that do not map cleanly to the concept of C++ threads.

					Specifically, we need to be able to

					•

					•

					•

					Reason about which types of memory allocation can be

					accessed by which devices in the system: using buffers

					and USM.

					Prevent unsafe concurrent memory accesses (data

					races) during the execution of our kernels: using

					barriers and atomics.

					Enable safe communication between program instances

					executing the same kernel and safe communication

					between different devices: using barriers, fences,

					atomics, memory orders, and memory scopes.

					•

					Prevent optimizations that may alter the behavior of

					parallel applications in ways that are incompatible

					with our expectations: using barriers, fences, atomics,

					memory orders, and memory scopes.

					496

					[bookmark: 514_0]
				

			

		

		
			
				
					Chapter 19 MeMory Model and atoMiCs

					•

					Enable optimizations that depend on knowledge of

					programmer intent: using memory orders and memory

					scopes.

					Memory models are a complex topic, but for a good reason—processor

					architects care about making processors and accelerators execute our

					codes as efficiently as possible! We have worked hard in this chapter

					to break down this complexity and highlight the most critical concepts

					and language features. This chapter starts us down the path of not only

					knowing the memory model inside and out but also enjoying an important

					aspect of parallel programming that many people don’t know exists. If

					questions remain after reading the descriptions and example codes here,

					we highly recommend visiting the websites listed at the end of this chapter

					or referring to the C++, SYCL, and DPC++ language specifications.

					What Is in a Memory Model?

					This section expands upon the motivation for programming languages to

					contain a memory model and introduces a few core concepts that parallel

					programmers should familiarize themselves with:

					•

					•

					•

					•

					Data races and synchronization

					Barriers and fences

					Atomic operations

					Memory ordering

					Understanding these concepts at a high level is necessary to appreciate

					their expression and usage in C++, SYCL, and DPC++. Readers with

					extensive experience in parallel programming, especially using C++, may

					wish to skip ahead.

					497

					www. dbooks . or g

					[bookmark: 515_0]
					[bookmark: 515_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 19 MeMory Model and atoMiCs

					Data Races and Synchronization

					The operations that we write in our programs typically do not map directly

					to a single hardware instruction or micro-operation. A simple addition

					operation such as data[i] += xmay be broken down into a sequence of

					several instructions or micro-operations:

					1. Load data[i]from memory into a temporary

					(register).

					2. Compute the result of adding xto data[i].

					3. Store the result back to data[i].

					This is not something that we need to worry about when developing

					sequential applications—the three stages of the addition will be executed

					in the order that we expect, as depicted in Figure 19-1.

					tmp = data [i]

					tmp += x

					data [i] = tmp

					Figure 19-1. Sequential execution of data[i] += xbroken into three

					separate operations

					Switching to parallel application development introduces an extra

					level of complexity: if we have multiple operations being applied to the

					same data concurrently, how can we be certain that their view of that data

					is consistent? Consider the situation shown in Figure 19-2, where two

					executions of data[i] += xhave been interleaved. If the two executions

					498

					[bookmark: 516_0]
					[bookmark: 516_1]
					[bookmark: 516_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 19 MeMory Model and atoMiCs

					use different values of i, the application will execute correctly. If they use

					the same value of i, both load the same value from memory, and one of

					the results is overwritten by the other! This is just one of many possible

					ways in which their operations could be scheduled, and the behavior of

					our application depends on which program instance gets to which data

					first—our application contains a data race.

					tmp = data [i]

					tmp = data [i]

					tmp += x

					tmp += x

					data [i] = tmp

					data [i] = tmp

					Figure 19-2. One possible interleaving of data[i] += xexecuted

					concurrently

					The code in Figure 19-3 and its output in Figure 19-4 show how

					easily this can happen in practice. If Mis greater than or equal to N, the

					value of jin each program instance is unique; if it isn’t, values of jwill

					conflict, and updates may be lost. We say may be lost because a program

					containing a data race could still produce the correct answer some or all

					of the time (depending on how work is scheduled by the implementation

					and hardware). Neither the compiler nor the hardware can possibly know

					what this program is intended to do or what the values of Nand Mmay be at

					runtime—it is our responsibility as programmers to understand whether

					our programs may contain data races and whether they are sensitive to

					execution order.

					499

					www. dbooks . or g

					[bookmark: 517_0]
				

			

		

		
			
				
					Chapter 19 MeMory Model and atoMiCs

					int* data = malloc_shared<int>(N, Q);

					std::fill(data, data + N, 0);

					Q.parallel_for(N, [=](id<1> i) {

					int j = i % M;

					data[j] += 1;

					}).wait();

					for (int i = 0; i < N; ++i) {

					std::cout << "data [" << i << "] = " << data[i] << "\n";

					}

					Figure 19-3. Kernel containing a data race

					N = 2, M = 2:

					data [0] = 1

					data [1] = 1

					N = 2, M = 1:

					data [0] = 1

					data [1] = 0

					Figure 19-4. Sample output of the code in Figure 19-3 for small

					values of Nand M

					In general, when developing massively parallel applications, we should

					not concern ourselves with the exact order in which individual work-

					items execute—there are hopefully hundreds (or thousands!) of work-

					items executing concurrently, and trying to impose a specific ordering

					upon them will negatively impact both scalability and performance.

					Rather, our focus should be on developing portable applications that

					execute correctly, which we can achieve by providing the compiler (and

					hardware) with information about when program instances share data,

					what guarantees are needed when sharing occurs, and which execution

					orderings are legal.

					500

					[bookmark: 518_0]
					[bookmark: 518_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 19 MeMory Model and atoMiCs

					Massively parallel applications should not be concerned with the

					exact order in which individual work-items execute!

					Barriers and Fences

					One way to prevent data races between work-items in the same group is to

					introduce synchronization across different program instances using work-

					group barriers and appropriate memory fences. We could use a work-group

					barrier to order our updates of data[i]as shown in Figure 19-5, and an

					updated version of our example kernel is given in Figure 19-6. Note that

					because a work-group barrier does not synchronize work-items in different

					groups, our simple example is only guaranteed to execute correctly if we

					limit ourselves to a single work-group!

					tmp = data [i]

					tmp += x

					data [i] = tmp

					�¤µµ¬¨µ

					tmp = data [i]

					tmp += x

					data [i] = tmp

					Figure 19-5. Two instances of data[i] += xseparated by a barrier

					501

					www. dbooks . or g

					[bookmark: 519_0]
					[bookmark: 519_1]
					[bookmark: 519_2]
				

			

		

		
			
				
					Chapter 19 MeMory Model and atoMiCs

					int* data = malloc_shared<int>(N, Q);

					std::fill(data, data + N, 0);

					// Launch exactly one work-group

					// Number of work-groups = global / local

					range<1> global{N};

					range<1> local{N};

					Q.parallel_for(nd_range<1>{global, local}, [=](nd_item<1> it) {

					int i = it.get_global_id(0);

					int j = i % M;

					for (int round = 0; round < N; ++round) {

					// Allow exactly one work-item update per round

					if (i == round) {

					data[j] += 1;

					}

					it.barrier();

					}

					}).wait();

					for (int i = 0; i < N; ++i) {

					std::cout << "data [" << i << "] = " << data[i] << "\n";

					}

					Figure 19-6. Avoiding a data race using a barrier

					Although using a barrier to implement this pattern is possible, it is

					not typically encouraged—it forces the work-items in a group to execute

					sequentially and in a specific order, which may lead to long periods of

					inactivity in the presence of load imbalance. It may also introduce more

					synchronization than is strictly necessary—if the different program

					instances happen to use different values of i, they will still be forced to

					synchronize at the barrier.

					Barrier synchronization is a useful tool for ensuring that all work-items

					in a work-group or sub-group complete some stage of a kernel before

					proceeding to the next stage, but is too heavy-handed for fine-grained

					(and potentially data-dependent) synchronization. For more general

					synchronization patterns, we must look to atomic operations.

					502

					[bookmark: 520_0]
					[bookmark: 520_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 19 MeMory Model and atoMiCs

					Atomic Operations

					Atomic operations enable concurrent access to a memory location without

					introducing a data race. When multiple atomic operations access the same

					memory, they are guaranteed not to overlap. Note that this guarantee

					does not apply if only some of the accesses use atomics and that it is our

					responsibility as programmers to ensure that we do not concurrently

					access the same data using operations with different atomicity guarantees.

					Mixing atomic and non-atomic operations on the same memory

					location(s) at the same time results in undefined behavior!

					If our simple addition is expressed using atomic operations, the result

					may look like Figure 19-8—each update is now an indivisible chunk of

					work, and our application will always produce the correct result. The

					corresponding code is shown in Figure 19-7—we will revisit the atomic_

					refclass and the meaning of its template arguments later in the chapter.

					int* data = malloc_shared<int>(N, Q);

					std::fill(data, data + N, 0);

					Q.parallel_for(N, [=](id<1> i) {

					int j = i % M;

					atomic_ref<int, memory_order::relaxed, memory_scope::system,

					access::address_space::global_space> atomic_data(data[j]);

					atomic_data += 1;

					}).wait();

					for (int i = 0; i < N; ++i) {

					std::cout << "data [" << i << "] = " << data[i] << "\n";

					}

					Figure 19-7. Avoiding a data race using atomic operations

					503

					www. dbooks . or g

					[bookmark: 521_0]
					[bookmark: 521_1]
					[bookmark: 521_2]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 19 MeMory Model and atoMiCs

					atomic_fetch_add (data [i], x);

					tmp = data [i]

					tmp += x

					data [i] = tmp

					atomic_fetch_add (data [i], x);

					tmp = data [i]

					tmp += x

					data [i] = tmp

					Figure 19-8. An interleaving of data[i] += xexecuted concurrently

					with atomic operations

					However, it is important to note that this is still only one possible

					execution order. Using atomic operations guarantees that the two updates

					do not overlap (if both instances use the same value of i), but there is still

					no guarantee as to which of the two instances will execute first. Even more

					importantly, there are no guarantees about how these atomic operations

					are ordered with respect to any non-atomic operations in different

					program instances.

					Memory Ordering

					Even within a sequential application, optimizing compilers and the

					hardware are free to re-order operations if they do not change the

					observable behavior of an application. In other words, the application

					must behave as if it ran exactly as it was written by the programmer.

					504

					[bookmark: 522_0]
					[bookmark: 522_1]
					[bookmark: 522_2]
				

			

		

		
			
				
					Chapter 19 MeMory Model and atoMiCs

					Unfortunately, this as-if guarantee is not strong enough to help us

					reason about the execution of parallel programs. We now have two sources

					of re-ordering to worry about: the compiler and hardware may re-order

					the execution of statements within each sequential program instance,

					and the program instances themselves may be executed in any (possibly

					interleaved) order. In order to design and implement safe communication

					protocols between program instances, we need to be able to constrain

					this re-ordering. By providing the compiler with information about our

					desired memory order, we can prevent re-ordering optimizations that are

					incompatible with the intended behavior of our applications.

					Three commonly available memory orderings are

					1. A relaxed memory ordering

					2. An acquire-release or release-acquire memory

					ordering

					3. A sequentially consistent memory ordering

					Under a relaxed memory ordering, memory operations can be re-

					ordered without any restrictions. The most common usage of a relaxed

					memory model is incrementing shared variables (e.g., a single counter, an

					array of values during a histogram computation).

					Under an acquire-release memory ordering, one program instance

					releasing an atomic variable and another program instance acquiring

					the same atomic variable acts as a synchronization point between those

					two program instances and guarantees that any prior writes to memory

					issued by the releasing instance are visible to the acquiring instance.

					Informally, we can think of atomic operations releasing side effects from

					other memory operations to other program instances or acquiring the

					side effects of memory operations on other program instances. Such a

					memory model is required if we want to communicate values between

					pairs of program instances via memory, which may be more common

					than we would think. When a program acquires a lock, it typically goes

					505

					www. dbooks . or g

				

			

		

		
			
				
					Chapter 19 MeMory Model and atoMiCs

					on to perform some additional calculations and modify some memory

					before eventually releasing the lock—only the lock variable is ever updated

					atomically, but we expect memory updates guarded by the lock to be

					protected from data races. This behavior relies on an acquire-release

					memory ordering for correctness, and attempting to use a relaxed memory

					ordering to implement a lock will not work.

					Under a sequentially consistent memory ordering, the guarantees

					of acquire-release ordering still hold, but there additionally exists a

					single global order of all atomic operations. The behavior of this memory

					ordering is the most intuitive of the three and the closest that we can get to

					the original as-if guarantee we are used to relying upon when developing

					sequential applications. With sequential consistency, it becomes

					significantly easier to reason about communication between groups

					(rather than pairs) of program instances, since all program instances must

					agree on the global ordering of all atomic operations.

					Understanding which memory orders are supported by a combination

					of programming model and device is a necessary part of designing

					portable parallel applications. Being explicit in describing the memory

					order required by our applications ensures that they fail predictably

					(e.g., at compile time) when the behavior we require is unsupported and

					prevents us from making unsafe assumptions.

					The Memory Model

					The chapter so far has introduced the concepts required to understand the

					memory model. The remainder of the chapter explains the memory model

					in detail, including

					•

					How to express the memory ordering requirements of

					our kernels

					506

					[bookmark: 524_0]
					[bookmark: 524_1]
				

			

		

		
			
				
					Chapter 19 MeMory Model and atoMiCs

					•

					•

					•

					•

					How to query the memory orders supported by a

					specific device

					How the memory model behaves with respect to

					disjoint address spaces and multiple devices

					How the memory model interacts with barriers, fences,

					and atomics

					How using atomic operations differs between buffers

					and USM

					The memory model is based on the memory model of standard C++

					but differs in some important ways. These differences reflect our long-term

					vision that DPC++ and SYCL should help inform future C++ standards: the

					default behaviors and naming of classes are closely aligned with the C++

					standard library and are intended to extend standard C++ functionality

					rather than to restrict it.

					The table in Figure 19-9 summarizes how different memory model

					concepts are exposed as language features in standard C++ (C++11,

					C++14, C++17, C++20) vs. SYCL and DPC++. The C++14, C++17, and

					C++20 standards additionally include some clarifications that impact

					implementations of C++. These clarifications should not affect the

					application code that we write, so we do not cover them here.

					507

					www. dbooks . or g

					[bookmark: 525_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 19 MeMory Model and atoMiCs

					std::atomic

					sycl::atomic_ref

					relaxed

					std::atomic_ref

					relaxed

					consume

					acquire

					release

					scq_rel

					seq_cst

					acquire

					release

					scq_rel

					seq_cst

					work_item

					sub_group

					work_group

					device

					system

					system

					std::atomic_thread_fence

					std::barrier

					sycl::atomic_fence

					nd_item::barrier

					sub_group::barrier

					Host

					Device (Global)

					Device (Private)

					Figure 19-9. Comparing standard C++ and SYCL/DPC++ memory

					models

					The memory_order Enumeration Class

					The memory model exposes different memory orders through six values of

					the memory_orderenumeration class, which can be supplied as arguments

					to fences and atomic operations. Supplying a memory order argument

					to an operation tells the compiler what memory ordering guarantees are

					required for all other memory operations (to any address) relative to that

					operation, as explained in the following:

					508

					[bookmark: 526_0]
					[bookmark: 526_1]
					[bookmark: 526_2]
				

			

		

		
			
				
					Chapter 19 MeMory Model and atoMiCs

					• memory_order::relaxed

					Read and write operations can be re-ordered before

					or after the operation with no restrictions. There are

					no ordering guarantees.

					• memory_order::acquire

					Read and write operations appearing after the

					operation in the program must occur after it (i.e.,

					they cannot be re-ordered before the operation).

					• memory_order::release

					Read and write operations appearing before the

					operation in the program must occur before it (i.e.,

					they cannot be re-ordered after the operation), and

					preceding write operations are guaranteed to be

					visible to other program instances which have been

					synchronized by a corresponding acquire operation

					(i.e., an atomic operation using the same variable

					and memory_order::acquireor a barrier function).

					• memory_order::acq_rel

					The operation acts as both an acquire and a release.

					Read and write operations cannot be re-ordered

					around the operation, and preceding writes must

					be made visible as previously described for memory_

					order::release.

					• memory_order::seq_cst

					The operation acts as an acquire, release, or

					both depending on whether it is a read, write, or

					read-modify-write operation, respectively. All

					operations with this memory order are observed

					in a sequentially consistent order.

					509

					www. dbooks . or g

					[bookmark: 527_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 19 MeMory Model and atoMiCs

					There are several restrictions on which memory orders are supported

					by each operation. The table in Figure 19-10 summarizes which

					combinations are valid.

					memory_order

					relaxed

					acquire

					release

					acq_rel

					seq_cst

					Figure 19-10. Supporting atomic operations with memory_order

					Load operations do not write values to memory and are therefore

					incompatible with release semantics. Similarly, store operations do not

					read values from memory and are therefore incompatible with acquire

					semantics. The remaining read-modify-write atomic operations and fences

					are compatible with all memory orderings.

					MEMORY ORDER IN C++

					the C++ memory model additionally includes memory_order::consume,

					with similar behavior to memory_order::acquire. however, the C++17

					standard discourages its use, noting that its definition is being revised. its

					inclusion in dpC++ has therefore been postponed to a future version.

					510

					[bookmark: 528_0]
				

			

		

		
			
				
					Chapter 19 MeMory Model and atoMiCs

					The memory_scope Enumeration Class

					The standard C++ memory model assumes that applications execute on

					a single device with a single address space. Neither of these assumptions

					holds for DPC++ applications: different parts of the application execute on

					different devices (i.e., a host device and one or more accelerator devices);

					each device has multiple address spaces (i.e., private, local, and global);

					and the global address space of each device may or may not be disjoint

					(depending on USM support).

					In order to address this, DPC++ extends the C++ notion of memory

					order to include the scope of an atomic operation, denoting the minimum

					set of work-items to which a given memory ordering constraint applies.

					The set of scopes are defined by way of a memory_scopeenumeration class:

					• memory_scope::work_item

					The memory ordering constraint applies only to

					the calling work-item. This scope is only useful for

					image operations, as all other operations within

					a work-item are already guaranteed to execute in

					program order.

					• memory_scope::sub_group, memory_scope::work_

					group

					The memory ordering constraint applies only to

					work-items in the same sub-group or work-group as

					the calling work-item.

					• memory_scope::device

					The memory ordering constraint applies only to

					work-items executing on the same device as the

					calling work-item.

					511

					www. dbooks . or g

					[bookmark: 529_0]
					[bookmark: 529_1]
				

			

		

		
			
				
					Chapter 19 MeMory Model and atoMiCs

					• memory_scope::system

					The memory ordering constraint applies to all work-

					items in the system.

					Barring restrictions imposed by the capabilities of a device, all memory

					scopes are valid arguments to all atomic and fence operations. However, a

					scope argument may be automatically demoted to a narrower scope in one

					of three situations:

					1. If an atomic operation updates a value in work-

					group local memory, any scope broader than

					memory_scope::work_groupis narrowed (because

					local memory is only visible to work-items in the

					same work-group).

					2. If a device does not support USM, specifying

					memory_scope::systemis always equivalent to

					memory_scope::device(because buffers cannot be

					accessed concurrently by multiple devices).

					3. If an atomic operation uses memory_

					order::relaxed, there are no ordering guarantees,

					and the memory scope argument is effectively

					ignored.

					Querying Device Capabilities

					To ensure compatibility with devices supported by previous versions of

					SYCL and to maximize portability, DPC++ supports OpenCL 1.2 devices

					and other hardware that may not be capable of supporting the full C++

					memory model (e.g., certain classes of embedded devices). DPC++

					provides device queries to help us reason about the memory order(s) and

					memory scope(s) supported by the devices available in a system:

					512

					[bookmark: 530_0]
					[bookmark: 530_1]
				

			

		

		
			
				
					Chapter 19 MeMory Model and atoMiCs

					• atomic_memory_order_capabilities

					atomic_fence_order_capabilities

					Return a list of all memory orderings supported by

					atomic and fence operations on a specific device.

					All devices are required to support at least memory_

					order::relaxed, and the host device is required to

					support all memory orderings.

					• atomic_memory_scope_capabilities

					atomic_fence_scope_capabilities

					Return a list of all memory scopes supported by

					atomic and fence operations on a specific device.

					All devices are required to support at least memory_

					order::work_group, and the host device is required

					to support all memory scopes.

					It may be difficult at first to remember which memory orders and

					scopes are supported for which combinations of function and device

					capability. In practice, we can avoid much of this complexity by following

					one of the two development approaches outlined in the following:

					1. Develop applications with sequential consistency

					and system fences.

					Only consider adopting less strict memory orders

					during performance tuning.

					2. Develop applications with relaxed consistency and

					work-group fences.

					Only consider adopting more strict memory orders

					and broader memory scopes where required for

					correctness.

					513

					www. dbooks . or g

					[bookmark: 531_0]
				

			

		

		
			
				
					Chapter 19 MeMory Model and atoMiCs

					The first approach ensures that the semantics of all atomic operations

					and fences match the default behavior of standard C++. This is the

					simplest and least error-prone option, but has the worst performance and

					portability characteristics.

					The second approach is more aligned with the default behavior of

					previous versions of SYCL and languages like OpenCL. Although more

					complicated—since it requires that we become more familiar with the

					different memory orders and scopes—it ensures that the majority of

					the DPC++ code we write will work on any device without performance

					penalties.

					Barriers and Fences

					All previous usages of barriers and fences in the book so far have ignored

					the issue of memory order and scope, by relying on default behavior.

					Every group barrier in DPC++ acts as an acquire-release fence to all

					address spaces accessible by the calling work-item and makes preceding

					writes visible to at least all other work-items in the same group. This

					ensures memory consistency within a group of work-items after a barrier,

					in line with our intuition of what it means to synchronize (and the

					definition of the synchronizes-with relation in C++).

					The atomic_fencefunction gives us more fine-grained control than

					this, allowing work-items to execute fences with a specified memory order

					and scope. Group barriers in future versions of DPC++ may similarly

					accept an optional argument to adjust the memory scope of the acquire-

					release fences associated with a barrier.

					514

					[bookmark: 532_0]
					[bookmark: 532_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 19 MeMory Model and atoMiCs

					Atomic Operations in DPC++

					DPC++ provides support for many kinds of atomic operations on a variety

					of data types. All devices are guaranteed to support atomic versions of

					common operations (e.g., loads, stores, arithmetic operators), as well as

					the atomic compare-and-swap operations required to implement lock-free

					algorithms. The language defines these operations for all fundamental

					integer, floating-point, and pointer types—all devices must support these

					operations for 32-bit types, but 64-bit-type support is optional.

					The atomic Class

					The std::atomicclass from C++11 provides an interface for creating and

					operating on atomic variables. Instances of the atomic class own their

					data, cannot be moved or copied, and can only be updated using atomic

					operations. These restrictions significantly reduce the chances of using the

					class incorrectly and introducing undefined behavior. Unfortunately, they

					also prevent the class from being used in DPC++ kernels—it is impossible

					to create atomic objects on the host and transfer them to the device! We

					are free to continue using std::atomicin our host code, but attempting to

					use it inside of device kernels will result in a compiler error.

					ATOMIC CLASS DEPRECATED IN SYCL 2020 AND DPC++

					the syCl 1.2.1 specification included a cl::sycl::atomicclass that

					is loosely based on the std::atomicclass from C++11. We say loosely

					because there are some differences between the interfaces of the two classes,

					most notably that the syCl 1.2.1 version does not own its data and defaults to

					a relaxed memory ordering.

					the cl::sycl::atomicclass is fully supported by dpC++, but its use is

					discouraged to avoid confusion. We recommend that the atomic_refclass

					(covered in the next section) be used in its place.

					515

					www. dbooks . or g

					[bookmark: 533_0]
					[bookmark: 533_1]
				

			

		

		
			
				
					Chapter 19 MeMory Model and atoMiCs

					The atomic_ref Class

					The std::atomic_refclass from C++20 provides an alternative interface

					for atomic operations which provides greater flexibility than std::atomic.

					The biggest difference between the two classes is that instances of

					std::atomic_refdo not own their data but are instead constructed from

					an existing non-atomic variable. Creating an atomic reference effectively

					acts as a promise that the referenced variable will only be accessed

					atomically for the lifetime of the reference. These are exactly the semantics

					needed by DPC++, since they allow us to create non-atomic data on the

					host, transfer that data to the device, and treat it as atomic data only after

					it has been transferred. The atomic_refclass used in DPC++ kernels is

					therefore based on std::atomic_ref.

					We say based on because the DPC++ version of the class includes three

					additional template arguments as shown in Figure 19-11.

					template <typename T,

					memory_order DefaultOrder,

					memory_scope DefaultScope,

					access::address_space AddressSpace>

					class atomic_ref {

					public:

					using value_type = T;

					static constexpr size_t required_alignment =

					/* implementation-defined */;

					static constexpr bool is_always_lock_free =

					/* implementation-defined */;

					static constexpr memory_order default_read_order =

					memory_order_traits<DefaultOrder>::read_order;

					static constexpr memory_order default_write_order =

					memory_order_traits<DefaultOrder>::write_order;

					static constexpr memory_order default_read_modify_write_order =

					DefaultOrder;

					static constexpr memory_scope default_scope = DefaultScope;

					explicit atomic_ref(T& obj);

					atomic_ref(const atomic_ref& ref) noexcept;

					};

					Figure 19-11. Constructors and static members of the atomic_refclass

					516

					[bookmark: 534_0]
					[bookmark: 534_1]
				

			

		

		
			
				
					Chapter 19 MeMory Model and atoMiCs

					As discussed previously, the capabilities of different DPC++ devices

					are varied. Selecting a default behavior for the atomic classes of DPC++ is

					a difficult proposition: defaulting to standard C++ behavior (i.e., memory_

					order::seq_cst, memory_scope::system) limits code to executing

					only on the most capable of devices; on the other hand, breaking with

					C++ conventions and defaulting to the lowest common denominator

					(i.e., memory_order::relaxed, memory_scope::work_group) could lead

					to unexpected behavior when migrating existing C++ code. The design

					adopted by DPC++ offers a compromise, allowing us to define our desired

					default behavior as part of an object’s type (using the DefaultOrderand

					DefaultScopetemplate arguments). Other orderings and scopes can be

					provided as runtime arguments to specific atomic operations as we see

					fit—the DefaultOrderand DefaultScopeonly impact operations where

					we do not or cannot override the default behavior (e.g., when using a

					shorthand operator like +=). The final template argument denotes the

					address space in which the referenced object is allocated.

					An atomic reference provides support for different operations

					depending on the type of object that it references. The basic operations

					supported by all types are shown in Figure 19-12, providing the ability to

					atomically move data to and from memory.

					517

					www. dbooks . or g

				

			

		

		
			
				
					Chapter 19 MeMory Model and atoMiCs

					void store(T operand,

					memory_order order = default_write_order,

					memory_scope scope = default_scope) const noexcept;

					T operator=(T desired) const noexcept; // equivalent to store

					T load(memory_order order = default_read_order,

					memory_scope scope = default_scope) const noexcept;

					operator T() const noexcept; // equivalent to load

					T exchange(T operand,

					memory_order order = default_read_modify_write_order,

					memory_scope scope = default_scope) const noexcept;

					bool compare_exchange_weak(T &expected, T desired,

					memory_order success,

					memory_order failure,

					memory_scope scope = default_scope) const noexcept;

					bool compare_exchange_weak(T &expected, T desired,

					memory_order order = default_read_modify_write_order,

					memory_scope scope = default_scope) const noexcept;

					bool compare_exchange_strong(T &expected, T desired,

					memory_order success,

					memory_order failure,

					memory_scope scope = default_scope) const noexcept;

					bool compare_exchange_strong(T &expected, T desired,

					memory_order order = default_read_modify_write_order,

					memory_scope scope = default_scope) const noexcept;

					Figure 19-12. Basic operations with atomic_reffor all types

					Atomic references to objects of integral and floating-point types extend

					the set of available atomic operations to include arithmetic operations, as

					shown in Figures 19-13 and 19-14. Devices are required to support atomic

					floating-point types irrespective of whether they feature native support

					for floating-point atomics in hardware, and many devices are expected

					to emulate atomic floating-point addition using an atomic compare

					exchange. This emulation is an important part of providing performance

					and portability in DPC++, and we should feel free to use floating-point

					atomics anywhere that an algorithm requires them—the resulting code

					will work correctly everywhere and will benefit from future improvements

					in floating-point atomic hardware without any modification!

					518

					[bookmark: 536_0]
				

			

		

		
			
				
					Chapter 19 MeMory Model and atoMiCs

					Integral fetch_add(Integral operand,

					memory_order order = default_read_modify_write_order,

					memory_scope scope = default_scope) const noexcept;

					Integral fetch_sub(Integral operand,

					memory_order order = default_read_modify_write_order,

					memory_scope scope = default_scope) const noexcept;

					Integral fetch_and(Integral operand,

					memory_order order = default_read_modify_write_order,

					memory_scope scope = default_scope) const noexcept;

					Integral fetch_or(Integral operand,

					memory_order order = default_read_modify_write_order,

					memory_scope scope = default_scope) const noexcept;

					Integral fetch_min(Integral operand,

					memory_order order = default_read_modify_write_order,

					memory_scope scope = default_scope) const noexcept;

					Integral fetch_max(Integral operand,

					memory_order order = default_read_modify_write_order,

					memory_scope scope = default_scope) const noexcept;

					Integral operator++(int) const noexcept;

					Integral operator--(int) const noexcept;

					Integral operator++() const noexcept;

					Integral operator--() const noexcept;

					Integral operator+=(Integral) const noexcept;

					Integral operator-=(Integral) const noexcept;

					Integral operator&=(Integral) const noexcept;

					Integral operator|=(Integral) const noexcept;

					Integral operator^=(Integral) const noexcept;

					Figure 19-13. Additional operations with atomic_refonly for

					integral types

					519

					www. dbooks . or g

					[bookmark: 537_0]
				

			

		

		
			
				
					Chapter 19 MeMory Model and atoMiCs

					Floating fetch_add(Floating operand,

					memory_order order = default_read_modify_write_order,

					memory_scope scope = default_scope) const noexcept;

					Floating fetch_sub(Floating operand,

					memory_order order = default_read_modify_write_order,

					memory_scope scope = default_scope) const noexcept;

					Floating fetch_min(Floating operand,

					memory_order order = default_read_modify_write_order,

					memory_scope scope = default_scope) const noexcept;

					Floating fetch_max(Floating operand,

					memory_order order = default_read_modify_write_order,

					memory_scope scope = default_scope) const noexcept;

					Floating operator+=(Floating) const noexcept;

					Floating operator-=(Floating) const noexcept;

					Figure 19-14. Additional operations with atomic_refonly for

					floating-point types

					Using Atomics with Buffers

					As discussed in the previous section, there is no way in DPC++ to allocate

					atomic data and move it between the host and device. To use atomic

					operations in conjunction with buffers, we must create a buffer of non-

					atomic data to be transferred to the device and then access that data

					through an atomic reference.

					Q.submit([&](handler& h) {

					accessor acc{buf, h};

					h.parallel_for(N, [=](id<1> i) {

					int j = i % M;

					atomic_ref<int, memory_order::relaxed, memory_scope::system,

					access::address_space::global_space> atomic_acc(acc[j]);

					atomic_acc += 1;

					});

					});

					Figure 19-15. Accessing a buffer via an explicitly created atomic_ref

					520

					[bookmark: 538_0]
					[bookmark: 538_1]
				

			

		

		
			
				
					Chapter 19 MeMory Model and atoMiCs

					The code in Figure 19-15 is an example of expressing atomicity in

					DPC++ using an explicitly created atomic reference object. The buffer

					stores normal integers, and we require an accessor with both read and

					write permissions. We can then create an instance of atomic_reffor each

					data access, using the +=operator as a shorthand alternative for the fetch_

					addmember function.

					This pattern is useful if we want to mix atomic and non-atomic

					accesses to a buffer within the same kernel, to avoid paying the

					performance overheads of atomic operations when they are not required.

					If we know that only a subset of the memory locations in the buffer will be

					accessed concurrently by multiple work-items, we only need to use atomic

					references when accessing that subset. Or, if we know that work-items in

					the same work-group only concurrently access local memory during one

					stage of a kernel (i.e., between two work-group barriers), we only need to

					use atomic references during that stage.

					Sometimes we are happy to pay the overhead of atomicity for every

					access, either because every access must be atomic for correctness or

					because we’re more interested in productivity than performance. For such

					cases, DPC++ provides a shorthand for declaring that an accessor must

					always use atomic operations, as shown in Figure 19-16.

					buffer buf(data);

					Q.submit([&](handler& h) {

					atomic_accessor acc(buf, h, relaxed_order, system_scope);

					h.parallel_for(N, [=](id<1> i) {

					int j = i % M;

					acc[j] += 1;

					});

					});

					Figure 19-16. Accessing a buffer via an atomic_refimplicitly

					created by an atomic accessor

					521

					www. dbooks . or g

					[bookmark: 539_0]
				

			

		

		
			
				
					Chapter 19 MeMory Model and atoMiCs

					The buffer stores normal integers as before, but we replace the regular

					accessor with a special atomic_accessortype. Using such an atomic

					accessor automatically wraps each member of the buffer using an atomic

					reference, thereby simplifying the kernel code.

					Whether it is best to use the atomic reference class directly or via an

					accessor depends on our use case. Our recommendation is to start with the

					accessor for simplicity during prototyping and initial development, only

					moving to the more explicit syntax if necessary during performance tuning

					(i.e., if profiling reveals atomic operations to be a performance bottleneck)

					or if atomicity is known to be required only during a well-defined phase of

					a kernel (e.g., as in the histogram code later in the chapter).

					Using Atomics with Unified Shared Memory

					As shown in Figure 19-17 (reproduced from Figure 19-7), we can construct

					atomic references from data stored in USM in exactly the same way as we

					could for buffers. Indeed, the only difference between this code and the

					code shown in Figure 19-15 is that the USM code does not require buffers

					or accessors.

					q.parallel_for(range<1>(N), [=](size_t i) {

					int j = i % M;

					atomic_ref<int, memory_order::relaxed, memory_scope::system,

					access::address_space::global_space> atomic_data(data[j]);

					atomic_data += 1;

					}).wait();

					Figure 19-17. Accessing a USM allocation via an explicitly created

					atomic_ref

					There is no way of using only standard DPC++ features to mimic the

					shorthand syntax provided by atomic accessors for USM pointers. However,

					we expect that a future version of DPC++ will provide a shorthand built on

					top of the mdspanclass that has been proposed for C++23.

					522

					[bookmark: 540_0]
					[bookmark: 540_1]
				

			

		

		
			
				
					Chapter 19 MeMory Model and atoMiCs

					Using Atomics in Real Life

					The potential usages of atomics are so broad and varied that it would be

					impossible for us to provide an example of each usage in this book. We

					have included two representative examples, with broad applicability across

					domains:

					1. Computing a histogram

					2. Implementing device-wide synchronization

					Computing a Histogram

					The code in Figure 19-18 demonstrates how to use relaxed atomics in

					conjunction with work-group barriers to compute a histogram. The kernel

					is split by the barriers into three phases, each with their own atomicity

					requirements. Remember that the barrier acts both as a synchronization

					point and an acquire-release fence—this ensures that any reads and writes

					in one phase are visible to all work-items in the work-group in later phases.

					The first phase sets the contents of some work-group local memory to

					zero. The work-items in each work-group update independent locations in

					work-group local memory by design—race conditions cannot occur, and

					no atomicity is required.

					The second phase accumulates partial histogram results in local

					memory. Work-items in the same work-group may update the same

					locations in work-group local memory, but synchronization can be deferred

					until the end of the phase—we can satisfy the atomicity requirements using

					memory_order::relaxedand memory_scope::work_group.

					The third phase contributes the partial histogram results to the

					total stored in global memory. Work-items in the same work-group are

					guaranteed to read from independent locations in work-group local

					memory, but may update the same locations in global memory—we

					523

					www. dbooks . or g

					[bookmark: 541_0]
					[bookmark: 541_1]
				

			

		

		
			
				
					Chapter 19 MeMory Model and atoMiCs

					no longer require atomicity for the work-group local memory and can

					satisfy the atomicity requirements for global memory using memory_

					order::relaxedand memory_scope::systemas before.

					ꢀꢀ 'HILQH VKRUWKDQG DOLDVHV IRU WKH W\SHV RI DWRPLF QHHGHG E\ WKLV NHUQHO

					WHPSODWH ꢁW\SHQDPH 7!

					XVLQJ ORFDOBDWRPLFBUHI ꢂDWRPLFBUHIꢁ

					7ꢃ

					PHPRU\BRUGHUꢄꢄUHOD[HGꢃ

					PHPRU\BVFRSHꢄꢄZRUNBJURXSꢃ

					DFFHVVꢄꢄDGGUHVVBVSDFHꢄꢄORFDOBVSDFH!ꢅ

					WHPSODWH ꢁW\SHQDPH 7!

					XVLQJ JOREDOBDWRPLFBUHI ꢂDWRPLFBUHIꢁ

					7ꢃ

					PHPRU\BRUGHUꢄꢄUHOD[HGꢃ

					PHPRU\BVFRSHꢄꢄV\VWHPꢃ

					DFFHVVꢄꢄDGGUHVVBVSDFHꢄꢄJOREDOBVSDFH!ꢅ

					4ꢆVXEPLWꢇ>ꢈ@ꢇKDQGOHUꢈ Kꢉꢂ^

					DXWR ORFDOꢂ ꢂORFDOBDFFHVVRUꢁXLQWꢊꢋBWꢃꢂꢌ!^%ꢃꢂK`ꢅ

					KꢆSDUDOOHOBIRUꢇ

					QGBUDQJHꢁꢌ!^QXPBJURXSVꢂꢍꢂQXPBLWHPVꢃꢂQXPBLWHPV`ꢃꢂ> @ꢇQGBLWHPꢁꢌ!ꢂLWꢉ^

					ꢀꢀꢂ3KDVHꢂꢌꢄꢂ:RUNꢎLWHPVꢂFRꢎRSHUDWHꢂWRꢂ]HURꢂORFDOꢂPHPRU\

					IRU ꢇLQWꢊꢋBW Eꢂ ꢂLWꢆJHWBORFDOBLGꢇꢏꢉꢅꢂEꢂꢁꢂ%ꢅ

					Eꢂꢐ ꢂLWꢀJHWBORFDOBUDQJHꢁꢂꢃꢃꢄ^

					ORFDO>E@ꢄ ꢄꢂꢅ

					`

					LWꢀEDUULHUꢁꢃꢅ ꢆꢆꢄ:DLWꢄIRUꢄDOOꢄWRꢄEHꢄ]HURHG

					ꢆꢆꢄ3KDVHꢄꢇꢈꢄ:RUNꢉJURXSVꢄHDFKꢄFRPSXWHꢄDꢄFKXQNꢄRIꢄWKHꢄLQSXW

					ꢆꢆꢄ:RUNꢉLWHPVꢄFRꢉRSHUDWHꢄWRꢄFRPSXWHꢄKLVWRJUDPꢄLQꢄORFDOꢄPHPRU\

					DXWR JUSꢄ ꢄLWꢀJHWBJURXSꢁꢃꢅ

					FRQVW DXWR >JURXSBVWDUWꢊꢄJURXSBHQG@ꢄ ꢄGLVWULEXWHBUDQJHꢁJUSꢊꢄ1ꢃꢅ

					IRU ꢁLQW Lꢄ ꢄJURXSBVWDUWꢄꢋꢄLWꢀJHWBORFDOBLGꢁꢂꢃꢅꢄLꢄꢌꢄJURXSBHQGꢅ

					Lꢄꢋ ꢄLWꢀJHWBORFDOBUDQJHꢁꢂꢃꢃꢄ^

					LQWꢍꢇBW Eꢄ ꢄLQSXW>L@ꢄꢎꢄ%ꢅ

					ORFDOBDWRPLFBUHIꢌXLQWꢍꢇBW!ꢁORFDO>E@ꢃꢋꢋꢅ

					`

					LWꢀEDUULHUꢁꢃꢅ ꢆꢆꢄ:DLWꢄIRUꢄDOOꢄORFDOꢄKLVWRJUDPꢄXSGDWHVꢄWRꢄFRPSOHWH

					ꢆꢆꢄ3KDVHꢄꢍꢈꢄ:RUNꢉLWHPVꢄFRꢉRSHUDWHꢄWRꢄXSGDWHꢄJOREDOꢄPHPRU\

					IRU ꢁLQWꢍꢇBW Eꢄ ꢄLWꢀJHWBORFDOBLGꢁꢂꢃꢅꢄEꢄꢌꢄ%ꢅ

					Eꢄꢋ ꢄLWꢀJHWBORFDOBUDQJHꢁꢂꢃꢃꢄ^

					JOREDOBDWRPLFBUHIꢌXLQWꢍꢇBW!ꢁKLVWRJUDP>E@ꢃꢄꢋ ꢄORFDO>E@ꢅ

					`

					`ꢃꢅ

					`ꢃꢀZDLWꢁꢃꢅ

					Figure 19-18. Computing a histogram using atomic references in

					different memory spaces

					524

					[bookmark: 542_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 19 MeMory Model and atoMiCs

					Implementing Device-Wide Synchronization

					Back in Chapter 4, we warned against writing kernels that attempt to

					synchronize work-items across work-groups. However, we fully expect

					several readers of this chapter will be itching to implement their own

					device-wide synchronization routines atop of atomic operations and that

					our warnings will be ignored.

					device-wide synchronization is currently not portable and is best left to

					expert programmers. Future versions of the language will address this.

					The code discussed in this section is dangerous and should not

					be expected to work on all devices, because of potential differences in

					scheduling and concurrency guarantees. The memory ordering guarantees

					provided by atomics are orthogonal to forward progress guarantees;

					and, at the time of writing, work-group scheduling in SYCL and DPC++

					is completely implementation-defined. Formalizing the concepts and

					terminology required to discuss execution models and scheduling

					guarantees is currently an area of active academic research, and future

					versions of DPC++ are expected to build on this work to provide additional

					scheduling queries and controls. For now, these topics should be

					considered expert-only.

					Figure 19-19 shows a simple implementation of a device-wide latch (a

					single-use barrier), and Figure 19-20 shows a simple example of its usage.

					Each work-group elects a single work-item to signal arrival of the group

					at the latch and await the arrival of other groups using a naïve spin-loop,

					while the other work-items wait for the elected work-item using a work-

					group barrier. It is this spin-loop that makes device-wide synchronization

					unsafe; if any work-groups have not yet begun executing or the currently

					executing work-groups are not scheduled fairly, the code may deadlock.

					525

					www. dbooks . or g

					[bookmark: 543_0]
					[bookmark: 543_1]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 19 MeMory Model and atoMiCs

					relying on memory order alone to implement synchronization

					primitives may lead to deadlocks in the absence of independent

					forward progress guarantees!

					For the code to work correctly, the following three conditions must

					hold:

					1. The atomic operations must use memory orders at

					least as strict as those shown, in order to guarantee

					that the correct fences are generated.

					2. Each work-group in the ND-range must be capable

					of making forward progress, in order to avoid

					a single work-group spinning in the loop from

					starving a work-group that has yet to increment the

					counter.

					3. The device must be capable of executing all work-

					groups in the ND-range concurrently, in order

					to ensure that all work-groups in the ND-range

					eventually reach the latch.

					526

				

			

		

		
			
				
					Chapter 19 MeMory Model and atoMiCs

					struct device_latch {

					using memory_order = intel::memory_order;

					using memory_scope = intel::memory_scope;

					explicit device_latch(size_t num_groups) :

					counter(0), expected(num_groups) {}

					template <int Dimensions>

					void arrive_and_wait(nd_item<Dimensions>& it) {

					it.barrier();

					// Elect one work-item per work-group to be involved

					// in the synchronization

					// All other work-items wait at the barrier after the branch

					if (it.get_local_linear_id() == 0) {

					atomic_ref<

					size_t,

					memory_order::acq_rel,

					memory_scope::device,

					access::address_space::global_space> atomic_counter(counter);

					// Signal arrival at the barrier

					// Previous writes should be visible to

					// all work-items on the device

					atomic_counter++;

					// Wait for all work-groups to arrive

					// Synchronize with previous releases by

					// all work-items on the device

					while (atomic_counter.load() != expected) {}

					}

					it.barrier();

					}

					size_t counter;

					size_t expected;

					};

					Figure 19-19. Building a simple device-wide latch on top of atomic

					references

					527

					www. dbooks . or g

					[bookmark: 545_0]
				

			

		

		
			
				
					Chapter 19 MeMory Model and atoMiCs

					// Allocate a one-time-use device_latch in USM

					void* ptr = sycl::malloc_shared(sizeof(device_latch), Q);

					device_latch* latch = new (ptr) device_latch(num_groups);

					Q.submit([&](handler& h) {

					h.parallel_for(R, [=](nd_item<1> it) {

					// Every work-item writes a 1 to its location

					data[it.get_global_linear_id()] = 1;

					// Every work-item waits for all writes

					latch->arrive_and_wait(it);

					// Every work-item sums the values it can see

					size_t sum = 0;

					for (int i = 0; i < num_groups * items_per_group; ++i) {

					sum += data[i];

					}

					sums[it.get_global_linear_id()] = sum;

					});

					}).wait();

					free(ptr, Q);

					Figure 19-20. Using the device-wide latch from Figure 19-19

					Although this code is not guaranteed to be portable, we have included

					it here to highlight two key points: 1) DPC++ is expressive enough to

					enable device-specific tuning, sometimes at the expense of portability; and

					2) DPC++ already contains the building blocks necessary to implement

					higher-level synchronization routines, which may be included in a future

					version of the language.

					Summary

					This chapter provided a high-level introduction to memory model and

					atomic classes. Understanding how to use (and how not to use!) these

					classes is key to developing correct, portable, and efficient parallel

					programs.

					528

					[bookmark: 546_0]
					[bookmark: 546_1]
				

			

		

		
			
				
					Chapter 19 MeMory Model and atoMiCs

					Memory models are an overwhelmingly complex topic, and our

					focus here has been on establishing a base for writing real applications. If

					more information is desired, there are several websites, books, and talks

					dedicated to memory models referenced in the following.

					For More Information

					•

					A. Williams, C++ Concurrency in Action: Practical

					Multithreading, Manning, 2012, 978-1933988771

					•

					H. Sutter, “atomic<> Weapons: The C++ Memory

					Model and Modern Hardware”, https://herbsutter.

					com/2013/02/11/atomic-weapons-the-c-memory-

					model-and-modern-hardware/

					•

					•

					H-J. Boehm, “Temporarily discourage memory_order_

					consume,” http://wg21.link/p0371

					C++ Reference, “std::atomic,”

					https://en.cppreference.com/w/cpp/atomic/atomic

					C++ Reference, “std::atomic_ref,”

					•

					https://en.cppreference.com/w/cpp/atomic/

					atomic_ref

					529

					www. dbooks . or g

					[bookmark: 547_0]
				

			

		

		
			
				
					
				
			

			
				
					Chapter 19 MeMory Model and atoMiCs

					Open Access This chapter is licensed under the terms

					of the Creative Commons Attribution 4.0 International

					License (http://creativecommons.org/licenses/by/4.0/), which permits

					use, sharing, adaptation, distribution and reproduction in any medium or

					format, as long as you give appropriate credit to the original author(s) and

					the source, provide a link to the Creative Commons license and indicate if

					changes were made.

					The images or other third party material in this chapter are included

					in the chapter’s Creative Commons license, unless indicated otherwise

					in a credit line to the material. If material is not included in the chapter’s

					Creative Commons license and your intended use is not permitted by

					statutory regulation or exceeds the permitted use, you will need to obtain

					permission directly from the copyright holder.

					530

				

			

		

		
			
				
					
				
			

			
				
					EPILOGUE

					Future Direction

					of DPC++

					Take a moment now to feel the peace and calm of knowing that we finally

					understand everything about programming using SYCL and DPC++. All

					the puzzle pieces have fallen into place.

					Before we get too comfortable, let’s note that this book was written

					at an exciting time for SYCL and DPC++. It has been a period of

					rapid development that coincided with the release of the first DPC++

					specification and the SYCL 2020 provisional specification. We’ve

					endeavored to ensure that the code samples, in all previous chapters,

					compile with the open source DPC++ compiler at the time that this

					book was sent to publication (Q3 2020) and execute on a wide range of

					hardware. However, the future-looking code shown in this epilogue does

					not compile with any compiler as of mid-2020.

					© Intel Corporation 2021

					J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-5574-2

					531

					www. dbooks . or g

				

			

		

		
			
				
					EpiloguE FuturE DirEction oF Dpc++

					In this epilogue, we speculate on the future. Our crystal ball can be a

					bit difficult to read—this epilogue comes without any warranty.

					The vast majority of what this book covers and teaches will endure

					for a long time. That said, it is too hot of an area for it to remain at rest,

					and changes are occurring that may disrupt some of the details we

					have covered. This includes several items that appeared first as vendor

					extensions and have since been welcomed into the specification (such as

					sub-groups and USM). That so many new features are on track to become

					part of the next SYCL standard is fantastic, but it has made talking about

					them complicated: should we refer to such features as vendor extensions,

					experimental/provisional features of SYCL, or part of SYCL?

					This epilogue provides a sneak peek of upcoming DPC++ features that

					we are very excited about, which were unfortunately not quite finished

					at the time we sent the book to be published. We offer no guarantees that

					the code samples printed in this epilogue compile: some may already be

					compatible with a SYCL or DPC++ compiler released after the book, while

					others may compile only after some massaging of syntax. Some features

					may be released as extensions or incorporated into future standards, while

					others may remain experimental features indefinitely. The code samples

					in the GitHub repository associated with this book may be updated to

					use new syntax as it evolves. Likewise, we will have an erratum for the

					book, which may get additions made from time to time. We recommend

					checking for updates in these two places (code repository and book

					errata—links can be found early in Chapter 1).

					Alignment with C++20 and C++23

					Maintaining close alignment between SYCL, DPC++, and ISO C++ has

					two advantages. First, it enables SYCL and DPC++ to leverage the newest

					and greatest features of standard C++ to improve developer productivity.

					Second, it increases the chances of heterogeneous programming features

					532

				

			

		

		
			
				
					EpiloguE FuturE DirEction oF Dpc++

					introduced in SYCL or DPC++ successfully influencing the future direction

					of standard C++ (e.g., executors).

					SYCL 1.2.1 was based on C++11, and many of the biggest

					improvements to the interfaces of SYCL 2020 and DPC++ are only possible

					because of language features introduced in C++14 (e.g., generic lambdas)

					and C++17 (e.g., class template argument deduction—CTAD).

					The C++20 specification was ratified in 2020 (while we were writing

					this book!). It includes a number of features (e.g., std::atomic_ref,

					std::bit_cast) that have already been pre-adopted by DPC++ and

					SYCL—as we move toward the next official release of SYCL (after 2020

					provisional) and the next version of DPC++, we expect to more closely

					align with C++20 and incorporate the most useful parts of it. For example,

					C++20 introduced some additional thread synchronization routines in the

					form of std::latchand std::barrier; we already explored in Chapter 19

					how similar interfaces could be used to define device-wide barriers, and it

					may make sense to reexamine sub-group and work-group barriers in the

					context of the new C++20 syntax as well.

					Work for any standard committee is never done, and work has already

					begun on C++23. Since the specification is not finalized yet, adopting any

					of these features into a SYCL or DPC++ specification would be a mistake—

					the features may change significantly before making it into C++23,

					resulting in incompatibilities that may prove hard to fix. However, there

					are many features under discussion that may change the way that future

					SYCL and DPC++ programs look and behave. One of the most exciting

					proposed features is mdspan, a non-owning view of data that provides

					both multidimensional array syntax for pointers and an AccessorPolicy

					as an extension point for controlling access to the underlying data.

					These semantics are very similar to those of SYCL accessors, and mdspan

					would enable accessor-like syntax to be used for both buffers and USM

					allocations, as shown in Figure EP-1.

					533

					www. dbooks . or g

				

			

		

		
			
				
					EpiloguE FuturE DirEction oF Dpc++

					queue Q;

					constexpr int N = 4;

					constexpr int M = 2;

					int* data = malloc_shared<int>(N * M, Q);

					stdex::mdspan<int, N, M> view{data};

					Q.parallel_for(range<2>{N, M}, [=](id<2> idx) {

					int i = idx[0];

					int j = idx[1];

					view(i, j) = i * M + j;

					}).wait();

					Figure EP-1. Attaching accessor-like indexing to a USM pointer

					using mdspan

					Hopefully it is only a matter of time until mdspanbecomes standard

					C++. In the meantime, we recommend that interested readers experiment

					with the open source production-quality reference implementation

					available as part of the Kokkos project.

					Another exciting proposed feature is the std::simdclass template, which

					seeks to provide a portable interface for explicit vector parallelism in C++.

					Adopting this interface would provide a clear distinction between the two

					different uses of vector types described in Chapter 11: uses of vector types

					for programmer convenience and uses of vector types by ninja programmers

					for low-level performance tuning. The presence of support for both SPMD

					and SIMD programming styles within the same language also raises some

					interesting questions: how should we declare which style a kernel uses, and

					should we be able to mix and match styles within the same kernel? We expect

					future vendor extensions to explore these questions, as vendors experiment

					with the possibilities in this space ahead of standardization.

					Address Spaces

					As we have seen in earlier chapters, there are some cases in which

					otherwise simple codes are complicated by the existence of memory

					spaces. We are free to use regular C++ pointers in most places, but at other

					times are required to use the multi_ptrclass and explicitly specify which

					address space(s) their code is expected to support.

					534

					[bookmark: 552_0]
					[bookmark: 552_1]
				

			

		

		
			
				
					EpiloguE FuturE DirEction oF Dpc++

					Many modern architectures solve this problem by providing hardware

					support for a so-called generic address space; pointers may point to

					any allocation in any memory space, so that we (and compilers!) can

					leverage runtime queries to specialize code in situations where different

					memory spaces require different handling (e.g., accessing work-group

					local memory may use different instructions). Support for a generic

					address space is already available in other programming languages, such

					as OpenCL, and it is expected that a future version of SYCL will adopt

					generic-by-default in place of inference rules.

					This change would greatly simplify many codes and make usage of the

					multi_ptrclass an optional performance-tuning feature instead of one

					that is required for correctness. Figure EP-2 shows a simple class written

					using the existing address spaces, and Figures EP-3 and EP-4 show two

					alternative designs that would be enabled by the introduction of a generic

					address space.

					// Pointers in structs must be explicitly decorated with address space

					// Supporting both address spaces requires a template parameter

					template <access::address_space AddressSpace>

					struct Particles {

					multi_ptr<float, AddressSpace> x;

					multi_ptr<float, AddressSpace> y;

					multi_ptr<float, AddressSpace> z;

					};

					Figure EP-2. Storing pointers to a specific address space in a class

					// Pointers in structs default to the generic address space

					struct Particles {

					float* x;

					float* y;

					float* z;

					};

					Figure EP-3. Storing pointers to the generic address space in a class

					535

					www. dbooks . or g

					[bookmark: 553_0]
					[bookmark: 553_1]
				

			

		

		
			
				
					EpiloguE FuturE DirEction oF Dpc++

					// Template parameter defaults to generic address space

					// User of class can override address space for performance tuning

					template <access::address_space AddressSpace =

					access::address_space::generic_space>

					struct Particles {

					multi_ptr<float, AddressSpace> x;

					multi_ptr<float, AddressSpace> y;

					multi_ptr<float, AddressSpace> z;

					};

					Figure EP-4. Storing pointers with an optional address space in a

					class

					Extension and Specialization Mechanism

					Chapter 12 introduced an expressive set of queries enabling the host

					to extract information about a device at runtime. These queries enable

					runtime parameters such as work-group size to be tuned for a specific

					device and for different kernels implementing different algorithms to be

					dispatched to different types of device.

					Future versions are expected to augment these runtime queries with

					compile-time queries, allowing code to be specialized based on whether

					an implementation understands a vendor extension. Figure EP-5 shows

					how the preprocessor could be used to detect whether the compiler

					supports a specific vendor extension.

					#ifdef SYCL_EXT_INTEL_SUB_GROUPS

					sycl::ext::intel::sub_group sg = it.get_sub_group();

					#endif

					Figure EP-5. Checking for Intel sub-group extension compiler

					support with #ifdef

					536

					[bookmark: 554_0]
					[bookmark: 554_1]
					[bookmark: 554_2]
				

			

		

		
			
				
					EpiloguE FuturE DirEction oF Dpc++

					There are also plans to introduce compile-time queries enabling

					kernels to be specialized based on properties (which we call aspects) of

					the targeted device (e.g., the device type, support for a specific extension,

					the size of work-group local memory, the sub-group size selected by the

					compiler). These aspects represent a special kind of constant expression

					not currently present in C++—they are not necessarily constexprwhen

					the host code is compiled but become constexprwhen the target device

					becomes known. The exact mechanism used to expose this device

					constexprconcept is still being designed. We expect it to build on the

					specialization constants feature introduced in the SYCL 2020 provisional

					and to look and behave similarly to the code shown in Figure EP-6.

					h.parallel_for(..., [=](item<1> it) {

					if devconstexpr (this_device().has<aspect::cpu>()) {

					/* Code specialized for CPUs */

					}

					else if devconstexpr (this_device().has<aspect::gpu>()) {

					/* Code specialized for GPUs */

					}

					});

					Figure EP-6. Specializing kernel code based on device aspects at

					kernel compile time

					Hierarchical Parallelism

					As we noted back in Chapter 4, we consider the hierarchical parallelism

					in older versions of SYCL to be an experimental feature and expect it to be

					slower than basic data-parallel and ND-range kernels in its adoption of

					new language features.

					There are a lot of new language features in DPC++ and SYCL 2020, and

					several of them are currently incompatible with hierarchical parallelism

					(e.g., sub-groups, group algorithms, reductions). Closing this gap would

					help to improve programmer productivity and would enable more

					compact syntax for some simple cases. The code in Figure EP-7 shows a

					537

					www. dbooks . or g

					[bookmark: 555_0]
					[bookmark: 555_1]
				

			

		

		
			
				
					EpiloguE FuturE DirEction oF Dpc++

					possible route for extending reduction support to hierarchical parallelism,

					enabling a hierarchical reduction: each work-group computes a sum, and

					the kernel as a whole computes the maximum of all sums across all work-

					groups.

					h.parallel_for_work_group(N, reduction(max, maximum<>()),

					[=](group<1> g, auto& max) {

					float sum = 0.0f;

					g.parallel_for_work_item(M, reduction(sum, plus<>()),

					[=](h_item<1> it, auto& sum) {

					sum += data[it.get_global_id()];

					});

					max.combine(sum);

					});

					Figure EP-7. Using hierarchical parallelism for a hierarchical

					reduction

					The other aspect of hierarchical parallelism that was briefly touched on

					in Chapter 4 is its implementation complexity. Mapping nested parallelism

					to accelerators is a challenge that is not unique to SYCL or DPC++, and this

					topic is the subject of much interest and research. As implementers gain

					experience with the implementation of hierarchical parallelism and the

					capabilities of different devices, we expect syntax in SYCL and DPC++ to

					evolve in alignment with standard practice.

					Summary

					There is already a lot of excitement around SYCL and DPC++, and this

					is just the beginning! We (as a community) have a long path ahead of

					us, and it will take significant continued effort to distil the best practices

					for heterogeneous programming and to design new language features

					that strike the desired balance between performance, portability, and

					productivity.

					538

					[bookmark: 556_0]
					[bookmark: 556_1]
				

			

		

		
			
				
					EpiloguE FuturE DirEction oF Dpc++

					We need your help! If your favorite feature of C++ (or any other

					programming language) is missing from SYCL or DPC++, please reach out

					to us. Together, we can shape the future direction of SYCL, DPC++, and

					ISO C++.

					For More Information

					•

					•

					•

					Khronos SYCL Registry, www.khronos.org/registry/

					SYCL/

					J. Hoberock et al., “A Unified Executors Proposal for

					C++,” http://wg21.link/p0443

					H. Carter Edwards et al., “mdspan: A Non-Owning

					Multidimensional Array Reference,” http://wg21.

					link/p0009

					•

					D. Hollman et al., “Production-Quality mdspan

					Implementation,” https://github.com/kokkos/

					mdspan

					539

					www. dbooks . or g

					[bookmark: 557_0]
				

			

		

		
			
				
					Index

					A

					B

					accelerator_selector, 39

					Accessors, see Buffers, accessors

					Actions, 53–54

					Address spaces, 534–536

					Ahead-of-time (AOT)

					compilation, 301

					Barrier function, 215, 509

					in ND-range kernels, 223

					in hierarchical kernels, 226

					Broadcast function, 234

					Buffers, 66

					access modes, 74

					vs. just-in-time (JIT), 301

					all_of function, 235

					Amdahl’s Law, 9

					accessors, 72–74

					context_bound, 181

					host memory, 182

					Anonymous function objects, see

					Lambda function

					any_of function, 235

					Asynchronous errors, 136–142

					Asynchronous Task Graphs, 15

					atomic_fence function, 514

					Atomic operations

					use_host_ptr, 180, 181

					use_mutex, 180–181

					build_with_kernel_type, 256

					Built-in functions, 472–478

					C

					atomic_fence, 513

					Central Processing Unit (CPU,

					atomic_ref class, 503

					46–48, 387–417

					data race, 17, 305, 498–500

					device-wide synchronization,

					525–528

					Choosing devices, 29

					Collective functions, 217, 234

					broadcast, 234

					std:atomic class, 515

					std:atomic_ref class, 516–520

					Unified Shared Memory, 522

					load and store, 238, 239

					shuffles, 235–238

					vote, 235

					© Intel Corporation 2021

					J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-5574-2

					541

					[bookmark: 558_0]
				

			

		

		
			
				
					Index

					Command group (CG)

					actions, 198

					malloc, 67

					unified virtual address, 67

					event-based

					Data movement

					dependences, 198, 199

					execution, 206

					explicit, 161–163, 207

					implicit

					Communication

					graph scheduling, 208, 209

					memcpy, 163

					migration, 165–166

					Data parallelism

					work-group local memory,

					217–219, 378–380

					work-items, 214–215

					Compilation model, 300–303

					Concurrency, 22

					basic data-parallel kernels

					id class, 104, 105

					Concurrent Execution, 214–215

					copy method, 207

					CPU execution, 47

					item class, 105, 106

					parallel_for function, 100, 101

					range class, 103, 104

					hierarchical kernels, 118

					h_item class, 122

					cpu_selector, 40

					CUDA code, 321, 322

					Custom device selector, 45,

					281–284

					parallel_for_work_group

					function, 119–121

					parallel_for_work_item

					function, 119–122

					private_memory

					D

					Data management

					class, 123, 124

					buffers, 66

					explicit, 64, 65

					images, 66

					loops vs. kernels, 95, 96

					multidimensional kernels,

					93–95

					implicit, 65

					ND-range kernels, 106

					group class, 116, 117

					local accessors, 112, 223

					nd_item class, 114, 115

					nd_range class, 113, 114

					sub_group class, 117, 118

					sub-groups, 110–112

					work-groups, 108–110

					work-items, 108

					strategy selection, 66, 86, 87

					USM, 66, 149–171, 522

					advantage of, 66

					allocations, 67, 68

					explicit data

					movement, 68, 69

					implicit data

					movement, 70, 71

					542

					www. dbooks . or g

				

			

		

		
			
				
					Index

					Data-parallel programming, 11, 12

					Debugging

					ahead-of-time compilation,

					438, 439

					kernel code, 306, 307

					parallel programming

					errors, 305

					building blocks, 465

					look-up tables, 466

					math engines, 466

					runtime error, 307–310

					default_selector, 39

					depends_on(), 79

					off-chip hardware, 467

					on-chip memory, 466

					Routing fabric, 467

					compilation time, 435–437

					customized memory

					systems, 432

					custom memory systems, 465

					memory access, 462, 464, 465

					optimization, 464

					Device code, 28

					Device information

					custom device selectors,

					281–284

					device queries, 290–292

					kernel queries, 292

					Device selection, 25–58, 277–294

					Directed acyclic graph (DAG), 75

					Direct Programming, 21

					Download code, 4

					stages, 463

					static coalescing, 464

					custom operations/operation

					widths, 429

					emulation, 437, 438

					pipes, 456–461

					First-in first-out (FIFO), 456, 457

					fpga_selector, 39

					E

					Error handling, 131–146

					Event, 78, 198

					Extension and specialization

					mechanism, 536–537

					FPGA emulation, 436

					Functions, built-in, 472–478

					functors, see Named function

					objects

					F

					G

					Fallback, 56–58

					Fences, 496

					get_access, 185

					get_global_id(), 115

					get_info, 285

					Fencing memory, 215

					Field Programmable Gate Arrays

					(FPGAs), 43–44, 419–469

					get_local_id(), 115

					543

				

			

		

		
			
				
					Index

					get_pointer_type, 168

					GitHub, 4

					gpu_selector, 39

					Graphics Processing Units (GPUs),

					353–384

					H

					Handler class, 50–51, 87–89

					Heterogeneous Systems, 10–11

					Hierarchical parallelism, 118–124,

					537, 538

					Host code, 27

					Host device, 48

					building blocks

					caches and memory, 355

					execution resources, 354

					fixed functions, 355

					device_selector, 39–43

					fp16, 381

					development and debugging,

					35–38

					fallback queue, 56–58

					host_selector, 39

					fast math functions, 382

					half-precision

					floating-point, 382

					predication, 364

					masking, 364

					offloading kernels

					abstraction, 369

					I

					id class, 103

					In-order queues, 77

					Initializing data, 310, 311, 313,

					315–318

					Initiation interval, 451

					Intermediate representation (IR),

					252, 253

					cost of, 372, 373

					software drivers, 370

					SYCL runtime library, 369

					profiling kernels, 378

					Graph scheduling

					command group

					Interoperability, 241, 251–254

					item class, 105

					actions, 198

					J

					event-based dependences,

					198, 199

					Just-in-time (JIT), 301

					host synchronization, 209–211

					GPU, see Graphics Processing

					Units

					Graph scheduling, 196

					group class, 116–117

					Group functions, 340, 341

					Gustafson, 9

					vs. ahead-of-time (AOT), 301

					K

					Kernels, 241–257

					advantages and

					disadvantages, 242

					544

					www. dbooks . or g

				

			

		

		
			
				
					Index

					interoperability

					M

					API-defined objects, 253, 254

					API-defined source, 252, 253

					functionality, 251

					malloc functions, 154, 155

					Map pattern, 325, 326, 341, 342

					mem_advise(), 168

					memcpy, 151, 163, 208

					Memory allocation, 61–89

					Memory consistency, 215,

					496–506

					Memory Fence, 226

					Memory model, 224, 497, 506, 507

					barriers and fences,

					implementation, 251

					lambda functions

					definition, 244

					elements, 244–247

					name template parameter,

					247, 248

					named function objects

					definition, 248, 249

					elements, 249–251

					501, 502, 514

					C++ and SYCL/DPC++, 508

					data races and synchronization,

					498–500

					in program objects, 255–257

					L

					definition, 497

					Lambda function, 18–21, 244–248

					Latency and Throughput, 7–8

					Libraries

					memory consistency, 495, 496

					memory_order enumeration

					class, 508–510

					built-in functions, 472–474

					common functions, 477

					geometric functions, 477

					host and device, 472

					memory_scope enumeration

					class, 511, 512

					ordering, 504–506

					querying device capabilities,

					512–514

					integer functions, 476

					math functions, 475

					memory_order enumeration class,

					508–510

					memory_scope enumeration class,

					511, 512

					relational functions, 478

					load() member function, 268

					Local Accessor, 223

					Local Memory, 217–219

					in ND-Range kernels, 223

					in hierarchical kernels, 226

					Loop initiation interval, 451

					Loop pipelining, 449

					memset function, 161

					Multiarchitecture binaries, 300

					Multidimensional Kernels, 93–95

					Multiple translation

					units, 319, 320

					545

				

			

		

		
			
				
					Index

					USM, 490, 491

					Pipes, 456

					Pipeline parallelism, 424

					Platform model

					N

					Named function objects, 248–251

					ND-range kernels, 106–107, 113

					example, 225–226

					compilation model, 300–303

					host device, 299

					multiarchitecture binary, 300

					SYCL and DPC++, 298

					Portability, 21

					prefetch (), 167

					Program build options, 256

					O

					oneAPI DPC++ Library

					(oneDPL), 339

					Out-of-order (OoO) queues, 78

					P

					Q

					Pack, 332, 333, 348, 349

					Queries

					parallel_for, 118

					device information, 290–292

					kernel information, 292, 294

					local memory type, 217

					memory model, 506–507

					unified shared memory, 168–170

					Queues

					parallel_for_work_group

					function, 227

					parallel_for_work_item function, 227

					Parallel patterns, 323–351

					map, 325, 326

					pack, 332, 333

					binding to a device, 34

					definition, 31, 32

					device_selector class, 34, 39, 40

					multiple queues, 33, 34

					properties, 324

					reduction, 328–330

					scan, 330, 331

					stencil, 326–328

					unpack, 333

					Parallel STL (PSTL)

					algorithms, 486

					R

					DPC++ execution policy, 484, 485

					dpstd :binary_search algorithm,

					489, 490

					FPGA execution policy, 485, 486

					requirements, 487

					Race Condition, 16

					Reduction library, 334–337

					Reduction patterns, 328–330,

					344, 345

					Run time type information

					(RTTI), 29

					std:fill function, 487, 488

					546

					www. dbooks . or g

				

			

		

		
			
				
					Index

					in-order queue object, 77

					OoO queues, 78

					simple task graph, 75

					S

					Sample code download, 3

					Scaling, 9–10

					Scan patterns, 330, 331, 345–348

					Selecting devices, 29–30

					set_final_data, 182

					Throughput and Latency, 7–8

					throw_asynchronous(), 145

					Translation units, 319–320

					try-catch structure, 140

					set_write_back, 182

					shared allocation, 151

					Shuffle functions, 235–238

					Single Program, Multiple Data

					(SPMD), 99

					Single-Source, 12, 26–27

					Standard Template Library

					(STL), 339

					U

					Unified shared memory (USM), 67,

					149–170, 522

					aligned_malloc functions, 159

					allocations, 67, 68

					data initialization, 160, 161

					data movement, see Data

					movement

					std::function, 142

					Stencil pattern, 326–328, 342, 344

					store() member function, 268

					Sub-Groups, 110–112, 230

					compiler optimizations, 238

					loads and stores, 238

					sub_group class, 117–118

					SYCL versions, 3

					definition, 150

					device allocation, 151

					explicit data movement, 68, 69

					host allocation, 151

					implicit data movement, 70, 71

					malloc, 67

					unified virtual address, 67

					memory allocation

					C++ allocator-style, 154,

					157, 158

					Synchronous errors, 135, 136,

					140, 141

					T

					C++-style, 154, 156, 157

					C-style, 154, 155

					Task graph, 48–49, 82–85, 196–211

					DAG, 75

					disjoint dependence, 76, 77

					execution, 75

					deallocation, 159, 160

					new, malloc,

					or allocators, 153

					explicit dependences, 78, 79

					implicit dependences, 80–85

					queries, 168–170

					shared allocation, 151, 152

					547

				

			

		

		
			
				
					Index

					Unnamed function objects, see

					Lambda function

					swizzle operations, 269, 270

					vote functions, 235

					Unpack patterns, 333, 350, 351

					update_host method, 207

					any_of function, 235

					all_of function, 235

					V

					W, X, Y, Z

					wait(), 78

					vec class, 263, 264

					Vectors, 259–275

					wait_and_throw(), 145

					Work Groups, 108–110, 214–215

					Work-group local memory,

					217–222, 378–380

					explicit vector code, 262, 263

					features and hardware, 261

					load and store

					operations, 267, 268

					Work-Item, 107, 214–215

					548

					www. dbooks . or g

				

			

		

	

EPUB/toc.xhtml

Table of Contents

		Page

EPUB/images/img_03.png
APIECSS

open

EPUB/images/img_01.png

